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A METHOD OF ASYMPTOTIC EXPANSIONS FOR SINGULAR
PERTURBATION PROBLEMS WITH APPLICATION

IN VISCOUS FLOW
By E. Dale Martin

Ames Research Center
SUMMARY

A method of asymptotic expansions for solving certain classes of
singular perturbation problems is presented. The method is a new approach to
constructing inner and outer expansions. A classification of singular pertur-
bation problems is given to clarify when this method is applicable and to aid
in determination of an appropriate matching rule to use. Simple examples are
given to illustrate use of the method.

For an important class of boundary-layer-type problems, this approach
employs a stronger form of the matching principle than used previously. All
displacement effects are retalned explicitly in this matching process, and
higher order displacements are identified and calculated. The concepts of com-
plex displacement and multiple displacements are introduced. The development
of the method leads to clarification of conditions for algebraic or exponen-
tial approach of inner to outer expansion solutions.

The expansion method developed here is applied to a model of a familiar
typical physical problem in viscous-flow theory: hypersonic flow over a
sphere. This application 1s viewed as an investigation in viscous flow of the
role of displacement in matching the boundary-layer asymptotic expansion to
the outer expansion. Higher order boundary-layer displacements are calculated
explicitly. Results for skin friction, shock standoff distance, etc., are
computed and compared with results from a numerical solution of the same model
problem to demonstrate the validity of the expansion method.

INTRODUCTION

The main purpose of this paper is to outline a method for solving certain
classes of singular perturbation problems including, in particular, an impor-
tant class of boundary-layer-type problems. The proposed method is a new
approach to defining and constructing inner and outer expansions. This
approach makes possible the use of a stronger form of the matching principle
than that used previously. It may be especially useful in problems where
certain displacement effects are important.

Singular perturbation problems occur in virtually every branch of
mathematical physics. A singular perturbation problem is encountered in seek-
ing a mathematical solution for a limiting wvalue (e.g., zero) of a parameter,



or in seeking a small perturbation solution, and when the solution so obtained
is not uniformly wvalid throughout the domain of the independent variables.
(For a comprehensive discussion and treatment, see ref. 1.) For example, the
formal solution may become infinite at some locus of the independent (e.g.,
space) variables. This occurs near a rounded leading edge in the small per-
turbation solution of thin-airfoil theory (see ref. 2). 1In other problems

the nonmuniformity may be evidenced by a discontinuity of the solution within
the region of interest (e.g., the discontinuous pressure across a shock wave
in inviscid-flow theory) or by failure of the solution to satisfy a boundary
condition (i.e., by a discontimuity at the boundary). The prime example of
this type is in the calculation of fluid flow at high Reynolds number over a
surface, in which the flow is essentially inviscid except for a thin boundary
layer at the surface. The inviscid-flow solution fails to satisfy the no-slip
condition at the boundary surface. The boundary-layer theory of Prandtl

(ref. 3) was developed to cope with the mathematical nonuniformity in the flow
calculation. Many other singular perturbation problems of this type occur in
all branches of fluid mechanics (e.g., see ref. 1). The discontinuity or
failure to satisfy a boundary condition 1s usually, but not always, due to the
order of the differential equation, or set of equations, being reduced in the
process of letting the small parameter become zero. The discontinuity is
actually an asymptotic representation of a quick transition (rapid variation)
of one or more dependent varigbles over a small range of the independent wvari-
able (ref. 4). In the twenty-eighth Josiah Willard Gibbs lecture in 195k,
Professor Friedrichs discussed the asymptotic phenomena associated with "quick
transition regions” in many branches of mathematical physics. Still another
type of singular perturbation problem has a prime example in the Stokes!
paradox of viscous flow, in which the approximate solution valid near a body
for very small Reynolds number cannot approach the uniform-stream condition at

large distances.

Rather than seek a simple limit (asymptotic solution) or simple perturba-
tion solution for the function of interest, one may attempt to construct a
perturbation expansion (power series) of the solution in terms of finite
values of the small parameter. Such an expansion would yield higher approxi-
mations to the solution (if uniformly valid), which are needed for sufficient
accuracy if the perturbation parameter is not very small. The small perturba-
tion theory originated by Sir Isaac Newton has been highly developed by many
others (see discussion by W. R. Sears, ref. 5). Extension of this theory to
the asymptotic expansion (power series expansion in the small parameter) was
devised by Poincaré (see ref. 6). If any of the terms of the expansion are
not uniformly valid, ways mst be found to determine an asymptotic limit func-
tion that is uniformly wvalid and to construct a uniformly valid asymptotic
expansion extending the solution to higher order approximations for sufficient
accuracy when the parameter is not very small.

A number of methods have been developed and used in finding uniformly-
valid asymptotic expansions (refs. 1 and 7 describe various methods). Each
method has certain attributes and certain types of problems wherein it is most
advantageously used. The method of strained coordinates (also known as
Lighthill's technique and as the PLK method; see ref. 8) was developed and
described by Lighthill (refs. 9 and 10). This method is most useful in treat-
ing problems of the first type described above (having an infinity in the for-
mal perturbation solution) and in singular characteristic problems (see
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ref. 11). 1In 1953, Kuo (ref. 12) provided an extension of Lighthill's
technique (see discussion by Tsien, ref. 8) to a problem in first-order
boundary-layer theory: viscous flow over a finite flat plate. Lighthill's
technique was used to deal with the nonuniformity at the leading edge, whereas
the nonuniformity associated with the entire boundary layer (caused by the
essential singularity in the complex plane of the reciprocal of Reynolds num-
ber) was dealt with by a simple stretching of variables, following Prandtl.
(Kuo's treatment of that problem has been criticized by Van Dyke (refs. 1 and
13) on the grounds that it omits a concentrated force at the leading edge and
that a constant in the solution was obtained by an imprecise asymptotic
evaluation.)

Methods for solving singular perturbation problems of the boundary-layer
type are extensions of Prandtl's boundary-layer theory, which incorporates a
special kind of limiting process that gives a uniformly-valid solution near
the boundary where the no-slip boundary condition is lost in the inviscid-flow
theory. In 1904, Prandtl (ref. 3) recognized that the outer inviscid-flow
solution could be Jjoined to an inner solution for the nonuniform region, or
boundary layer, found by properly magnifying the physical variables and by
considering the relative order of magnitude of the various terms in the Navier-
Stokes equations in the limit of infinite Reynolds number. Since then,
"boundary-layer methods" have been applied to many other problems (see refs. U,
8, 14, and 15; and the literature referred to in those papers). In 1935,
Prandtl (ref. 16) suggested how to improve the flat-plate boundary-layer solu-
tion of Blasius (ref. 17) by iteration. This suggestion led to the use of an
asymptotic expansion by Alden (ref. 18) with the first-order boundary-layer
solution of Blasius as the first term. The history of that problem and correc-
tion and further extension of the solution have been treated in detail by
Goldstein (ref. 19, chap. 8); the solution was further developed and discussed
by Murray (ref. 20). 1In all boundary-layer-type problems, the general ideas
of Prandtl's boundary-layer theory provide the first term in an asymptotic
expansion of the solution to the full governing equations.

A significant advancement in the use of asymptotic expansions in singular
perturbation problems was made by the introduction and development of a tech-
nigque by Kaplun, Lagerstrom, and Cole (refs. 21-25). This technique, usually
referred to as the method of "inner and outer expansions” (but more recently
as "matched asymptotic expansions"), employs two distinct asymptotic series
expansions of the solution: an outer expansion valid away from the nonuni-
formity and an inner expansion valid in the "inner region" of the nonuniform-
ity. Limiting processes are defined according to which the inner and outer
expansions must match in their "overlap region of common validity." The devel-
opment of this procedure was closely related to some previous work by Latta
(ref. 26). The method has been further developed and procedures established
(especially for boundary-layer-type problems) by Van Dyke (refs. 13 and 27
to 31).

A method based on the ideas of inner and outer expansions is developed
in the present paper. This method, which employs "displacement variables," a
stronger form of the matching principle, and some new rules for obtaining
appropriate forms for the expansions, may be advantageous in some problems



involving special displacement effects. The particular definitions of inner
and outer functions used here and the use of displacement variables represent
a different point of view from the conventional inner and outer expansion
method. A result of this different point of view i1s that a more precise
matching principle is found to apply in certain problems, which is useful in
determining and understanding displacement effects. Development of the method
includes introduction of the concepts of complex displacement and multiple
displacements. Development of the new matching rule also leads to knowledge
of conditions for which the inner expansion can approach a form of the outer
expansion term by term exponentially and of the reasons for either exponential
or algebraic termwise gpproach of inner solutions to outer solutions. The
method is formulated in terms of power-series expansions of some form of the
small parameter, but terms of higher order than those considered in a calcula-
tion may be of some order other than a power of the small parameter.

After the method is outlined and discussed in detail, including several
simple examples to illustrate procedures, 1t is applied to a simplified model
of the familiar problem of hypersonic viscous flow over a sphere at high
Reynolds nunmber. That problem has been studied by a number of investigators,
but the main purposes in this application will be to illustrate the precise
determination of displacement effects, to identify and calculate the higher
order displacements themselves, and possibly to generate an increased under-
standing, by the point of view of this method, of the role played by displace-
ment in the relationship between inner and outer solutions.

CHARACTERISTICS OF SEVERAL CLASSES OF SINGULAR
PERTURBATION PROBLEMS

This section discusses several different classes of singular perturbation
problems and their distinctions. The main purpose is to make clear the place
of the method discussed below in singular perturbation theory. Since differ-
ent types of nonuniformities have different characteristics and must be han-
dled somewhat differently, it is convenient to classify problems according to
the type of nonuniformity. This classification is necessary to the discussion
of different types of inner and outer solutions, of the ways the inner solu-
tion can approach the outer solution, and, conseguently, of the matching prin-
ciples relating inner and outer solutions. Some important aspects of this
classification, and of the examples given, are developed and discussed more

fully in later sections.

Purely for purposes of reference in this study, different types of
singular perturbation problems will arbitrarily be denoted by class 1, class 2,
etec. There are classes other than those discussed here and many problems
overlap the classes, that is, may have the characteristics of two classes at

the same time.

The problems used here to illustrate different classes will involve only
ordinary differential equations, and will be wvery simple. However, the
classes of problems these examples represent, ahd the asymptotic phenomena
they exemplify, are extremely important. The same classes include problems
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with more than one independent variable and with both linear and nonlinear
equations. The primary use of expansion methods is in finding analytical
solutions to those more difficult problems. Understanding of the simpler
problems can lead ultimately to the successful solution of the more difficult
problems with at least some of the same essential features.

In the following, a dependent variable f may be a function of several
independent variables, including a small parameter e:

T = f(x}yJZ)e)

The parameter € may be thought of as a complex variable and f as a complex
function of €, even though ¢ and f will ultimately take on only real values
in the solution. The theory of complex variables and, in particular, of ana-
lytic functions can then be used in discussing the behavior of f as ¢
varies, for example, as € approaches zero (ef. ref. 1). Since the examples
that follow will contain only derivatives with respect to y, they will be
written as ordinary differential equations for f£(y) with da( )/dy denoted

by ().

The various classes, to be illustrated below, will be distinguished by
properties I, IL, and ITII, described by the following statements (where either
I(a) or I(b) describes property I, etc.):

I. Order of the differential equation

(a)
(b)

IT. A discontinuity or loss of a boundary condition in the formal
asymptotic solution obtained for € = 0O

not reduced upon letting e — O.
reduced upon letting € — O.

Jo |
0nin

(a) does not occur, but the terms of the asymptotic expansion are
singular (infinite) at some y (e.g., y = 0); that expansion
solution is then designated as an "outer expansion."

(b) occurs because of a singularity in that expansion solution (then
designated "outer expansion") at (or near, as € - 0) the loca-
tion where the lost condition was to have been applied. (The
singularity may not be apparent in lower order terms of the
expansion.)

(c) occurs, but the terms of the expansion solution (then designated
"outer expansion," to be more completely defined later) are
otherwise regular (i.e., are sectionally continuous and have
sectionally continuous, or one-sided, derivatives) at the loca-
tion where the condition is lost (y = 0).

(d) occurs and the limit either of the function or of its deriva-
tives does not exist as € - 0, so there is no "outer solution.”

ITT. An essential singularity (of the function f) with respect to €
on the plane € =0 in £, y, € space



(a) does not exist; an appropriate inner solution is equivalent to
f, and its asymptotic expansion for small ¢ (the inner expan-
sion, a valid representation for f near y = O; to be defined)
approaches algebraically to the outer expansion term by term.

() exists; an appropriate inner solution function valid near y = 0O
(to be defined) approaches exponentially to the outer solution
function as y — «; but the asymptotic expansion of the inner
solution approaches algebraically to the outer expansion term
by term.

(e) exists; and an inner solution (a valid representation for £
near y = 0; to be defined) and its asymptotic expansion for
small € approach exponentially to a form of the outer solution
term by term.

(d) exists; but there is no "inner region" (boundary layer, or quick
transition region) to which the nonuniformity is confined, and
hence no possible matching of an inner solution with the outer
solution.

For convenience, the following table lists the properties of the six
classes to be discussed.

Class Properties

Ta, ITa, ITTa
Ia, ITb, IIIa
Ib, ITb, ITTa
Ib, ITb, IITb
Ib, IIc, Iilc
Ib, ITd, ITTId

NN WM -

Class 1 will denote the general class of problems for f in which
statements Ia, ITa, and ITTa apply. To illustrate this class, consider
example problem 1:

(y + ef)f" + £ =1

1

(1)
2

It

£(1)

This is a special case of a problem used by Lighthill (ref. 10) in illustrat-
ing the method of strained coordinates and is identical to one used by
Van Dyke (ref. 1). To study the characteristics of this problem, we note that

the exact solution is
2 1
f = [(g) + 2 <——§—#> + h]

which may be expanded, using the binomial theorem, for small ¢ as:

- L 3 L L 2a(_ 3 __L 3 1 3
f = <F + %> telzy ~ 2 2y%> + € < 558 " 55t oya T 5y5) 0(e®)

as € =0

1/2

(3)
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The expansion (3) could also be obtained directly by seeking a perturbation-
expansion solution of equations (l), that is, by assuming the solution has the
form

f=f1(y) + efaly) + 2aly) + . . . (k)

and substituting into equations (1), letting € = O successively to obtain
the respective problems for f,, fo, f3, etc. From eguation (3), the solution
gpparently is singular as € > 0 and y — 0. Also from equation (3) we see
that £ 1is analytic for all other y at ¢ 0, and from equation (2) we see
that £ is analytic for all other € at y = 0. Thus, the nonuniformity is
limited to the neighborhood of the line y =0, € =0 in T, y, € space, and
the function f is, in general, analytic for e = O except on that line.
Finding an expansion valid near y = 0 for small e will be discussed later.

I

Let class 2 denote the class of problems for £ in which statements Ia,
ITb, and IITa apply. An example illustrating this class is example problem 2:

(¢ + y)F" + (o + L)F* =0 , (0 < o < x)

(5)
£(0)

il

o, fw) = 1

The exact solution is
[oF

- (55) Q

for which the expansion for small e is
a 2
1 - <§7> [1 - a <3€7> + “J——lg?l <§7> + .. ] (7a)
a
oLl a1 o _ otz | alatl
1 € <y> + € <y_d'ﬁ> € [-g(ymljl + ... ("(b)

The asymptotic solution cannot satisfy the boundary condition at y = 0. Note
that in this example f 1is not analytic with respect to € at e =0 for
any fixed y wunless « 1s a postive integer. However, if o = m/n where

m and n are positive integers, then £ is analytic with respect to

€' = el/0 at e = 0. PFurther interesting properties are introduced by the
variation of the parameter a, to be seen later.

H
1l

]
[\

1

Subclasses of class 2 have special properties that are of great interest
in singular perturbation theory. Let class 2a denote the problems of class 2
for which the singularity in statement ITb is an essential singularity at a
finite location in y space where the boundary condition is lost (without
loss of generality, say at y = 0). Consider example problem 2a:




yof" + (2y - €)ft = 0
(8)
£(0) = 1, (o) =0
for which the solution is
f=1 - e_e/y (9)

This function has an essential singularity at y = 0, and the respective terms
of its expansion for small € do not satisfy the boundary condition at y =0,
although the complete solution does. This solution function can also be said
to have a boundary layer at y = © for large €, which can be seen by using
the transformation z = l/y, € = 1/B, to obtain a problem and solution having
the same forms for f£(z,B) as the function f(y,e) of example problem 5a below.

Now further denote by class 2Zb the subclass for which the essential
singularity is at y = *, where a boundary condition cannot be satisfied.
This subclass is exemplified by "Stokes' paradox" of viscous flow, and is
simply illustrated by example problem 2b:

"oy t
f ef 0 (10)
£(0) =0, o) = 1
with the solution
£f=1- e &Y
2.2 3.3
€ yf €7y
= €y - 51 + 3! = e e e (ll)

The expansion of this solution for small € has a nonuniformity at y = o;
the boundary condition there cannot be satisfied by a finite number of terms
of the expansion for small €. The algebraic approach (in property IIIa) of
the "inner solution" of the nonuniform region near y = ®© (or near

z = 1/y = 0) toward a finite number of terms of the "outer solution" (the
expansion of f for small €) as the outer region is approached (1l/ey — «)

is best observed by transforming the problem by z = l/y to the form of
example problem 2a above. The function (equation (11)) also has a boundary
layer for large ¢ at y = 0, as is seen by substituting 8 = l/e to get the
same form for small B as in example problem 5a below.

Denote by class 3 the class of problems for f in which statements Ib,
ITb, and IITa are true. An illustration of class 3 is provided by example

problem 3:
e+ ()M -0, (o<p<1)
(12)
£(0) =0, o) = 1




The asymptotic solution found by letting € - O cannot satisfy the boundary
condition at y = 0. The exact solution is the same as that for example
problem 2, given by equation (6), where:

calzh oo (o) () o3

Let class L4 be the class of problems for f in which properties Ib, IIb,
and IITb apply. Consider example problem ha:

2" + (by® - 6e)(1L - f) = -2¢

(14)
£(0) = £1(0) = 0O

The exact solution is

1/2

£ = <}§1— e'yz/ex/ﬂy/e et® gt (152)

gl/2
o}

This function has an essential singularity at € = O, but has the asymptotic

expansion for large y and small ¢ (and the outer expansion):

€, 1+3¢2 . 1-3-563
2y = (2y®)2  (2pP)3

fe~l+ + ... (15p)

Another interesting problem in this class is example problem Lb:

ey2f" + 2y3f' - 2ef = 2y3 - lhey
' (16)
£(0) = 0, £1(0) = 2

with the solution
£f=y+ @ (1-e¥/% (17)

which is regular at y = 0, but has the outer solution, y + €/y.

Let class 5 denote the class of problems for f in which statements Ib,
ITc, and IITc apply. A large portion of the quick-transition phenomena of
mathemstical physics, including the classical boundary-layer theory, generally
fits into this category. A number of examples will be given to illustrate
various phenomena in this class.

One of the simplest problems with which to illustrate class 5 is the same
as equations (12) but with p = O. With this example one can observe the
transition from a problem in class 3 with algebraic approach of the inner
solution to a finite number of terms of the outer solution (with no essential
singularity in the solution at € = 0) to one in class 5 with exponential
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termwise approach of the inner solution to the outer solution and with an
essential singularity in the solution at e = 0. Consider example problem 5a:

e" + £ =0

(18)
£(0) = 0 , fo) = 1
The exact solution 1s simply
£=1-cV/E (19)
It is instructive to obtain this same result from equation (6), using equa-
tions (13) and letting p - 0. In so doing, one needs the limit process:
L -l L - x By
. e H ) py\ -~ B . i log <l * €>
lim = 1lim { 1 + = = 1lim e
u—~0 \ & +y KL=>0 € U0
_ L
= exp [ - lim <l°g(l’:l uy/e)>] =e °© (20)

=0

Other simple problems with properties appropriate to class 5, each with
certain features that will be of interest and useful to study, are the

following:

Example problem 5b will be used to illustrate the common occurrence of
simple first-order displacement:

ef™ + yf" =0
(21)

£(0) = £1(0) = 0 ; £reo) ~ 1

The solution is

f =y erf [@b} + %)l/g <e'y2/2€ - 1) (22a)

where

_ £ _.2
erf £ = o l/zf e ¥ at (220)
O

The displacement (to be defined) is

1/2
& = el/2 <§‘> (22¢)

Higher order displacement effects will be illustrated by example
Problem 5c:

10
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ef™ 4+ £ = )

(23)
£(0) = £1(0) =0 ; f£(o0) ~1l+y
The solution is
:E‘=Y+X§‘€+ee_y/€ (2ka)
and the displacement (to be defined) is
d = ¢ <l - % € + % e® - g e+ .. .> (2kp)

The displacement in a given problem may be complex although both the outer and
inner solutions are purely real. An example with a purely imaginary displace-
ment (to be discussed) is example problem 54:

ef™ 4+ £" =1

(25)
£(0) = 0 ; £1(0) =1 ; £' ~ v + o(1) as y > ®
with the solution
£ = %?—+ e - ce V€ (26)
Example problem Se contains two different displacements (one of which is
complex) :
ef"" + £M = 0
£(0) = £1(0) = £"(0) = O (27)
£' ~ y + o(y) as y >
The solution is
£ = %; - ey + €2 - c2eV/E (28)

The cause of more than one displacement and the handling of such problems will
be discussed.

A problem in which the asymptotic inner solution is not equivalent to the
exact solution (to be discussed when the inner solution is defined) is example

problem 5f:
ef" - £ = -1 (0<y<1)

(29)
£(0) = 2, £1(1) = 0

11




This mathematical model, which corresponds to a problem in one-dimensional
heat conduction, was posed by Professor W. C. Reynolds of Stanford University
(private comminication). A similar problem was discussed by Friedrichs and by
Van Dyke (see ref. 1, p. 79). The exact solution to equation (29) is

- 1/2 _ 1/2
cosh(y-1)fe'’Z _ e V/e , e(y 2)/67
f=14+ o= L1+ 5+ s (30a)
cosh 1/e 1+ e2/€ 1+ e™2/€
The asymptotic (inner) solution is
e
f~1+e + exp as € >01in0<y<1 (30b)

Internal quick-transition regions and their handling can be illustrated
by example problem 5g:

ef" + 2ff' = O

(31)
£(e) ~ -1,  f£(o) ~ 1 |
with the solution
f = tanh(y/e) (32)
and by example problem 5Sh:
e(y + e)3" + 2(f - &)[(y + e)f' -f]1 =0
(33)
£r(=e) ~ -1, (=) ~ 1
with the solution
£ = (y + ¢)tanh(y/e) (3ka)
and the displacements (to be defined):
st =87 = - (3k4b)

The latter problem can illustrate the calculation of displacement and its role
in matching concerning a model varigble (f') which is analogous to a variable
that may overshoot and then relax in a shock wave.

A class of problems closely related to these previous classes may be
denoted by class 6, the problems in which statements Ib, ITId, and ITId apply.
Example problem 6:

ef" + £ =1
(35)
£(0) = £1(0) = 1

12




with the solution

f = e*2 gin <;f%é> + 1 (36)

illustrates this class (see ref. 1, p. 213). Note that f has an essential
singularity on €= 0, but not of the exponential type, and that f'= cos(y/e*’3)
has no limit as € - 0. One does not expect to find physical problems in
this category.

A great deal can be learned about the various classes by studying the
above simple problems. The discussion is limited here because much informa-
tion is contained in the definition of each class, and the classes and example
problems will be discussed later.

In attempting to solve a given problem by asymptotic or perturbation
expansion, one may encounter a nonuniformity such as described by one of the
properties in II. One cannot be certain in advance whether the expansion
solutions to be determined will be analytic with respect to some form of the
small parameter. The approach often used in inner and outer expansions is to
start by assuming a power-series form of the expansion and trying to determine
the respective terms. In addition, one would like to know which statement in
ITT applies, in particular, whether the outer expansion is approached termwise
algebraically or exponentially by the appropriate inner expansion. If there
is no discontinuity or lost condition at a boundary (IIa), one can generally
be sure that there is no quick-transition region and hence no exponential-type
essential singularity (IIIa). Then, 1f the terms of the outer expansion are
singular at y = 0, the approach will be algebraic (to be explained in the
subsection The Matching Principle). If the nonuniformity at e = 0 is due to
an exponential-type essential singularity, the order of the differential equa-
tion is reduced, a condition may be lost, and then, 1if there are no negative
powers of ¥y 1in the outer expansion, an appropriate inner expansion can
approach termwise exponentially to a form of the outer expansion, to be shown.
Thus, it will be seen (subsection entitled The Matching Principle) that state-
ment IIlc follows from Ilc. First- and higher-order boundary-layer problems
in the fluid-flow theory governed by the Navier-Stokes equations are generally
of this type. It is in these problems of class 5 where the procedures to be
outlined below (p. 16 f£f) are most advantageously used.

ESSENTIAL FEATURES OF THE METHOD OF MATCHED ASYMPTOTIC
EXPANSIONS (INNER AND OUTER EXPANSIONS)

The purpose of this section is to review briefly the principal ideas of
the general inner- and outer-expansion method, which is the primary basis for
the new approach to be discussed in the next section. For a more complete
description of the general method the reader should refer to references 1 and
21 to 25.

It is useful to introduce first the most basic principles of asymptotic
expansions along with the appropriate and more or less conventional notation,
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for which we may refer to Erdélyi (ref. 32). An asymptotic expansion to N
terms for a function f of a small quantity € and possibly of some indepen-
dent variables x and y, for example, may have the form

N

f(X)Y;e) = Z fn(x:y)q)n(e) + O[CPN(e)]
= (37)

as € = 0 with x,y fixed

il

where the "smaller order" symbol o ) means that, if A = o(B) as e = 0O,
then 1lim A/B = 0. It should also be specified that ®, = 1 and that
-—>

€0
¢n+l(€) = o[p,(e)] as €= 0. If f can be expanded (as in eq. (37)) to N
terms, then one may also write
M

£(x,y,€) = Z fn(x,3)0p(e) + Olgy, ()]
e (38)
as € =~ 0 with x,y fixed

where M 1is any integer from 1 to N -1 (ref. 32), and the order symbol o( )
means that if A = O(B) as € = O (where B # 0), then lin A/B is bounded.
€~

An asymptotic expansion for f to N terms may also be written without order
symbols by using the symbol which represents "asymptotically equal." Thus,

N
£(x,7,¢) ~ Z £_(x,7)0,(e)
et (39)

as € - 0 with x,y fixed

The number N may be infinity, but the symbol ~ is still used to indicate
that f may contain terms of smaller order than any quantity in the sequence
of ¢, as € — 0; for example, e™1/€ is smaller than On = e for any
integer n as € — O.

In using the method of matched asymptotic expansions, one usually starts
with a power series expansion in what appears to be the logical form of the
small parameter ¢, and then modifies it as necessary if and when difficulties
appear. One may also leave the form of the expansions initially unspecified
so0 that the expansions can be constructed as the problem proceeds (ref. 1).

The first step in solving a problem for f(x,y,e) by this method is to
represent the solution function by the asymptotic expansion (39) where ¢, = 1
and N - »©, Equation (39) is then substituted into the differential equation
and boundary conditions of the problem. The first-order problem (for fi(x,y))
may be extracted by letting e become zero. One then observes that £1(x,y)
is nonuniform at some values of x and y. Equation (39) is then denoted as
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the outer expansion. "Inner variables" are defined by magnifying the physical
variables in such a way that the inner dependent variables remain uniformly
valid as € = o and as the location of the nonuniformity of the outer problem
is approached similtaneously. The inner variables are thus required to be
0(1) as € - o. If the nonuniformity is at y = o when ¢ = o, then the
independent variable y is magnified by some function of € as

v = o1(e)Y (ko)

The dependent variable f should be similarly magnified:

f(X)Y:e) = UZ(G)F(XJY’G) (L"l)

where the inner dependent variable F is 0(1l) as € » o with x and ¥ fixed.
The functions o3 and oo must be determined according to the requirements of
the specific problem upon substituting equations (40) and (41) into the
governing equations and boundary conditions.

An "inner" asymptotic expansion for F, valid in the inner region, is
also left unspecified a priori and may be written as

0

F(x,Y,e) ~Z Fr(x,Y)o,(e)

n=1

(42)
as € »> 0 with x,Y fixed

where @3 = 1 and &p,, = o(@n) as € > 0. As discussed sbove, one may try
letting the sequence of @n(e) be a power sequence of what appears to be the
appropriate form of €, until difficulty is encountered, but, in general, the
form of each ®n(e) mist be determined as one proceeds with the problem.

The solutions may be obtained for the respective terms of the inner and
outer expansions when sufficient boundary conditions for each of the problems
are known. Sufficient boundary conditions are provided by a procedure for
matching the inner and outer expansions to each other according to the princi-
ples set forth by Kaplun (ref. 21) (see discussion by Lagerstrom, ref. 25).

In essence, the outer expansion of the inner expansion matches the inner
expansion of the outer expansion to appropriate orders for the respective
terms. The matching principle also can often be used to determine the inner
and outer asymptotic sequences of functions of ¢ (ref. 1).

The matching principle is conveniently stated with the following notation:
Let fM° be the m term outer expansion for f, that is,

10 = £1 + ga(e)fa + . . . + oy (e)fy (43)

and let fni be the product of 02(6) times the n term expansion of F,
that is,

1 = go[Fy + 02(e)Fo + . . . + cI’n(e)Fn] (4le)
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If we now substitute inner variables into the outer expansion (h3),.we have
"the m term outer expansion in inner variables," denoted as (fi0)1; if we
substitute outer variables into the inner expansion (LL), we have "the n
term inner expansion in outer variables," denoted as (fn1)O, Then the first

n terms of (f™) constitute the "n term inner expansion of the m term
outer expansion," denoted as (fM)11, and the first m terms of (f21)° con-
stitute the "m term outer expansion of the n term inner expansion,”" denoted
as (fP1)MO, The principle that determines the matching between the inner and

outer expansions is then
(me)nl = (fnl)mo (LI'S)

The use of intermediate expansions and intermediate matching is also often
necessary or convenient (see ref. 1 or 23).

After the inner and outer problems have been solved it may be desired to
conbine the inner and outer solutions into one solution called the "composite
solution,"” which approaches the outer solution in the outer limit and
approaches the inner solution in the inner limit. The composite solution is
therefore uniformly valid over the entire region of interest. In the above
notation, the "additive rule" for forming the composite solution is

£¢ = ¢l 4 pmo _ (ORI (46)
METHOD OF ASYMPTOTIC EXPANSIONS WITH DISPLACEMENT VARIABLES

In this section will be outlined a new approach to obtaining inner and
outer asymptotic-expansion solutions in certain classes of problems that have
been formilated in terms of differential equations and boundary conditions and
that contain a small parameter. The essential features distinguishing this
approach from the conventional inner- and outer-expansion method are:

(a) a specific definition of outer and inner functions as formal sums of
series that converge in some region for sufficiently small values of the
expansion parameter and which are asymptotic to the exact solution;

(b) the use of displacement variables both in defining the outer solution
function and in matching the inner solution to the outer solution;

(c) the development and statement of a matching principle that explicitly
retains all displacement effects in matching inner solutions to outer solu-
tions in a class of problems; and

(d) a statement of certain rules often found to be useful in obtaining
the appropriate forms of the expansions and magnifying factors. Application
of the approach formulated here is restricted to certain classes of problems

(to be discussed).
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To show how this method takes advantage of the special properties of
class 5 (as defined in the section "Characteristics of Several Classes of
Singular Perturbation Problems") and to show the distinctions from other
classes, the solution of problems in classes 1 and 5 will be discussed.

Analytic Inner and Outer Functions as
Sums of Assumed Power Series

Sums of asymptotic series and of analytic expansions.- Consider a
function f(x,y,e) with the asymptotic expansion:

20,5,6) = ) () (oy)  ms €0 (47)
n=1
where
91 = 1 and ¢ (e) = olp,-,(e)] as e~-0 (48)

and where, for each @n(e), there is some m > O such that
e = olp,(e)] as € = 0

The series on the right side of (L7) is an asymptotic series. The series

may be convergent or divergent (ref. 32, p. 12). Denote by D*¥(x,y) the
domain of all values of x,y for which the series converges for sufficiently
small e > o. Define f£*(x,y) (in D¥*) as the sum of the infinite series of
functions op,(e)f (x,y), excluding all parts of £ that are ol[gp,(e)] as

€ >0 for all n (e.g., terms that are exponentially small if the o¢n are
powers of e, @, = e%):

[00]

f*(XJyJe) = Z (Pn(e)fn(x;Y) in D*(X;Y) (14'9)
n=1

Although the expansion (47) does not uniquely determine its asymptotic sum £
(ref. 32, p. 14) because f may contain terms of smaller order as € — o

than any @n(e) of the asymptotic sequence, the sum of the series, £%*, is here
defined to contain only the terms ¢,f, and so is uniquely defined by
equation (h9), if the series converges.

From this point on, only continuous functions that possess asymptotic
expansions in series of powers of some function €, of the small parameter
will be considered (except in the subsection "Extension of the Method to a
Class of Problems With Outer and Inner Functions Nonanalytic at e = 0,"
pp. 33-36); thus it is assumed that f has the asymptotic expansion

0]

f(x,y,e) ~ }: eg_lfn(x,y) as € =0 (50a)

n=1
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where

€c = ecle) » 0 as € =0 (50b)

and where ec(e) is determined in some way. (The subscript e does not yet
have any special meaning here, but is convenient for later use.) For all
x,y in D*(x,y), defined now as the domain where the series in (50a) con-
verges for sufficiently small e > O, the sum of the series excluding terms of
f +that are of order smaller than ecm for any m is an analytic function of

€c at € = 0, denoted as

0
t*(x,y,€) = Z en " (x,y)  in D*(x,y) (50¢)
n=1
(from the theory of analytic functions of a complex variable). Conversely,
if, in some domain D*(x,y), f%* 1is analytic with respect to e, at € = 0,
the series (SOc) converges for sufficiently small e there and is identical
to the Maclaurin series in €c.

Denote the difference between f and £* by q*(x,y,e):
£(x,y,e) = £*(x,y,¢) + a*(x,y,¢) (504)

Since g¥ contains only the parts of f +that are smaller than any power of
€c as € = O (by the definition of f£¥%), then

a*(x,y,€) ~ O + exp as € =0 (50e)

where "exp as € — 0" indicates terms that are exponentially small as € - 0
with the other arguments (x,y) fixed.

The analytic function f*(x,y,e) is defined in a nonvanishing domain
D*(x,y) if, as assumed, £ has the asymptQtic power-series form, (SOa), and
if also at some boundary, say yb(xb), a boundary condition is applied to f

that is an analytic function of €. at e = 0:

£(xp,5ps€) = T*(xp,74,€) = Z o T En(x ,¥y) (50f)
n=1i

(The above statement is easily proved with the comparison test for convergence,
with the geometric series as majorant.)

An example that conveniently illustrates the above discussion 1s the
function
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Yy -t _ -
£(y,e) = \/ﬁ %—;—%%-+ eV re™E L (y>0) (51a)
o]
= £*(y,e) + a*(y,e) , (0 <y <) (51b)
where
Yot =
™*(y,e) = f §—+—C—i%= Z (-1)"nte™ [l —<l+y+§:—+ . e +¥l-—r,l> e_y]
0 n=o
(51c)
and
*(y,e) = e V'€ 4+ 7Y€ (514)

The funection f(y,e) is not analytic with respect to € at € = O, but its
asymptotic expansion for small € 1is the asymptotic power series in (51e).
The series (5lc) converges for |e| < |1/y|, and so f£* is analytic with
respect to € at € = O for all finite y, and D*(y) is then 0 < y < .

For y = %, the function Ly (L + et)™1 e"t dt becomes nonanalytic at e = O,

since the radius of convergence about € = O in the complex € plane vanishes,
and the asymptotic expansion

o0

-t

~ e’ dt | - 71 1.2 _ 51.3

£ (e, €) JF T ~ 1 - lle + 2le e+ ... (51e)
O

diverges (cf. ref. 32, pp. 1—3). It is pertinent to note here that, in this
typical example, £f¥ 1is not a good approximation to f very near y = O for
small €, since at y =0, f =1 + e-1/€ gnd £¥ = 0. Now let y = €Y and
consider the same function f£(y,e) as in equation (5la) but with y replaced
by €Y:

€Y .-t - -
f(eY,e) = ‘JF §_I_g%-+ e Ty e V€ P (Y > 0) (52a)
o

This function of Y and €, which is identically equal to f(y,e), is also
nonanalytic with respect to € at € = 0, but has the asymptotic expansion

[o'e] 0

£(el,e) ~ e + Z Ay (n)eI . Z B3(¥)e"I*E (52b)

Jj=o J=o0

where:
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_ . (-1) Kpry?dtr ‘ 1) 1y2dt2k
AJ(Y) B (g +1 -x)t BJ(Y) = L(2,)j + 2 - k)! (52¢)
k=0 k=0

The two series in (52b) converge for all |eZ| < |1/¥]. Thus, £(e¥,e) can be
written, by analogy with equation (50d), as

f(e¥,e) = F(Y,e) + a(¥,e) , (0 <Y <) (53a)

where F(Y,e) is the analytic function in € at € = 0 which 1s the sum of
the power series in e, containing all parts of f not exponentially small as
€ >0 with Y fixed:

eY -t
= e - dt  _-Y
e - [ e (53)
o
and where
Q(Y,e) = e /€ Lo+ exp as € - 0 with Y fixed (53c)

The domain of definition of F(Y,e) (like f*(y,e)) is (0 <Y <
function F(Y,e) is a good approximation to f(y,e) near y =0
)

In another example (cf. example problem S5g, egs. (31)
f = tanh(x/e) (5k4a)
has the asymptotic expansions:

£~ 1+ exp as e€~0 (x>0)

(5k40)
f ~-1+ exp as e >0 (x <0)
In this case, two asymptotic analytic functions f%* are needed:
%+ =1 , x>0 ; £¥- = -1, x <0 (5ke)

since the asymptotic solution is discontinuous at x = 0. This is an example
of Stokes' phenomenon (ref. ). TFor this case, the analytic function of €
that is uniformly valid in the region of the nonuniformity of f(x,e) is

F(X) = tanh X (54d)
where X = x/e is held fixed as € — O.
In solving for an unknown function £ 1in a singular perturbation
problem, it is not known for certain whether asymptotic expansions of the type

(50a) can properly represent the function. If one assumes that such an expan-
sion does represent the function, then one can speak of the analytic sum ¥
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of the assumed power series (or, more briefly, assumed-analytic function).

If the form (50a) is valid as assumed, then the function f£* defined by
equation (SOc) exists at least in some neighborhood D¥* of a boundary where a
condition is applied to f +that is analytic with respect to at € = 0.

€e

In the approach to finding inner and outer expansions used here, assumed-
analytic functions (like f£¥* and F in equations (51) to (53)) will be used for
both the outer and magnified inner functions. The outer function is assumed
to be a power series in some parameter = eo(e) and the magnified inner
function to be a power series in ?e These power series are assumed
to represent the solution asymptotlcally as € = 0 and are analytic functions
of €o and ¢4, respectively, at e = 0 in the respective regions where the
series converge. If consistent solutions cannot be determined for the respec-
tive terms of an expansion, then the assumed-power-series function is not
applicable, that is, cannot represent the exact solution function asymptoti-
cally. If the various terms in the assumed expansion can be determined and
are consistent and noncontradictory, then it is assumed that the function f*
given by the expansion represents the function £ asymptotically. This is
equivalent to an assumption of uniqueness of the asymptotic expansion, to the
order in ¢, considered. The asymptotic expansion of a function is known to
be unique For a given asymptotic sequence (ref. 32, p. 13). If, in a given
problem, there is reason to doubt that outer and magnified inner functions
that are analytic in some ec(e) at € = 0 can be defined even though the
first few terms of a power series in €, are found, then a slightly dlfferent
point of view may be adopted (see subsection ”Exten81on of the Method . . .,'
PP, 33-36), but the terms already found remain valid to the order considered.

In many problems either the outer function or the inner function or both
may be equivalent to the exact solution function. For instance, example
problem 1 will have both outer and inner functions eguivalent to the exact
solution function; in class 5, however, the outer solution cannot be equiva-
lent to the exact solution, but in all the example problems of class 5 except
5f the inner solution function is the exact solution. In example problem 5f
neither the outer function nor the inner is the exact solution.

Definitions of inner and outer functions.- The definitions of the outer
and inner functions to be used in the present approach are contained in the
following paragraphs.

Assume that f(x,y,e) can be separated into two parts, one part (£°)
which is analytic in some region with respect to some form eo(e) at € =0
and the other (qo) decreasing to zero faster than any power of e€g:

£(x,y,e) = £9(x,y,¢) + a©(x,y,¢) (55a)
where
% is analytic with respect to €o = eg{e) at € = O in some Do(x,y);}
q® ~ 0 + exp as € — 0 with x,y fixed

(55b)

)

21



Note that only terms contributing to f© will appear in any asymptotic power-
series expansion of f as € =~ 0 with x,y fixed. Except near some nonuni-

formity of f at some (x,y), £© is then a valid representation of f and is
defined as the outer function (if, in fact, £ has an asymptotic power series).

If the order of the differential equation is not reduced and all the
boundary conditions can be satisfied, one can treat the problem as class 1.
In this class there are no exponentially small terms in the exact solution,
so gq® =0 and f© and its expansion for small € are equivalent to f:

O =f , (class 1) (56)

The outer expansion is then determined as the power series in € 1in the form
of, say, equation (SOc) which, by direct substitution, is made to satisfy the
differential equation and all the boundary conditions on f(x,y,e). This
expansion may then be not uniformly valid near some X,y because individual
terms are singular there.

In boundary-layer-type problems (class 5) the order of the differential
equation is reduced upon letting € — 0. Then the limit solution obtained is
found to be discontinuous; that is, either it does not satisfy a condition of
continuity of f (or one of its derivatives) at an internal location (called a
Stokes line; cf. ref. 4), or it cannot satisfy (continuously) a boundary con-
dition required of f or one of its derivatives. The discontinuous behavior
of the limit function indicates the presence of terms in f +that vary rapidly
(exponentially) near the location where the discontinuity is encountered. The
discontinuity itself is an asymptotic representation of a rapid variation of
the dependent variable over a very small range of the independent wvariable
(say over y near y = 0).

An outer function f© +that corresponds to the nonuniformity at y = O
in a problem of class 5 may be defined by equations (55), where ¢° contains
the exponentially decaying quantities (as € = 0) including those that cause
the rapid variation of £ and its derivatives near y = O. (In the case of
an internal discontinuity, the function f© in equations (55) is given by two
different analytic functions, Ot ang £O°, one valid on each side of the dis-
continuity.) Since q© and its derivatives are exponentially small everywhere
except very near y = O when € is small, f° is a valid asymptotic function
representing f everywhere except very near y = 0. Then 22_ must satisfy,
to within exponentially small amounts, the differential equation and all
boundary conditions of f and its derivatives except those at y = 0. Further
conditions (at or near y = 0) that determine f© are discussed below.

Denote by w(x,y,e) the particular dependent variable, or derivative of
f, whose limit function in the outer problem is discontinuous; also define
w° as the corresponding function in the problem for f° and let

W(X)yJe) = WO(X,y,e) + QW(X:YJG) (57)

where dy ~ O +exp as € = 0. (In example problem 5b the outer limit func- .
tion is fi(y) = y; the derivative that cannot satisfy a condition at y = O

/
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is f'(y) 1, so, in that problem, w = £'(y,e).) At y = O, neither the
complete function f° nor any of its derivatives can generally satisfy
exactly the same conditions as are satlsfled by £ and its derivatives
because of the significant terms in q° and its derivatives at y = 0. Con-
sider example problem 5b, for which the solution f 1s given by equation (22a)
and f!' = erf(yﬁfﬁg), and in which £ and its derivatives are represented
asymptotically to within exponentially small quantities by the outer functions

1
©(y) =y - e¥'2 Jo/x , ? =1, o' = 0 (58a)
At y = 0:
£=0 , =0, f£'=¢Y2 5k, £M=0, . ..
0 = 2 ol , fot' =1, £"=0 , ©M=0,...
(58b)

Note that the deviation of w° from w = f' at y =0 1is 0(1) as e - o,
whereas the deviations of the derivatives of lower order than w° are o(1)
as € = 0. One possible way to regard this is that, to first order, only the
condition on w = f' must be omitted from the outer problem, but that, to
order ¢, the condition on f is not satisfied. But then there would not be
sufficient conditions to determine f° +to second order. A more useful
approach is to omit only the condition on w from the outer problem and to
require f° +to satisfy the same condition as f (i.e., f = 0 in this problem)
in some way, to make f° determined. But we see that f° wvanishes at
y=086= el/ZNIEJﬁ rather than at y = 0. Thus, we require the conditions on
all lower order derlvatlves of £ than w to be satisfied in the problem for

ment surface, y = d. In general, there is a displacement associated with each
condition applied to f© near y = 0. Corresponding to each condition

y=0, 3%(x,y,e)dy" = ay (59a)

for all lower order derivatives than w, the displacement & for the function
™0 (x,y,e) /Oy is therefore the root & of

B9 (x,8,e) Oy = ap (59b)

Since & 1is small, the conditions can usually be transferred by Taylor's
series to ¥y = 0. The displacements are unknown a priori in solving a problem,
but are determined as part of the solution (to be shown) One must be careful
to note that even in problems involving only real variables with purely real
solutions, the displacements may be complex. In example problem 5e, for which
w = £"(y,e) and for which two conditions must be applied in the problem for

fO near y = 0, the condition f© = 0 is satisfied at y = &g = e(1 £ 1) and
fO' = 0 is satisfied at y = & = €. (Complex displacements in general need
not be considered unless a difficulty is encountered not otherwise explainable
in matching inner solutions to outer solutions or in determining some unknown
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quantity.) With the above requirement that all conditions on dependent
functions of lower order than w be applied at displacement surfaces, the
outer function f° is determined in terms of unknown displacements in class 5.

Although the individual terms of the expansion of f° will be determined
from reduced-order equations, the function f£f° is still determined by the
complete differential equation. The condition on w at y = O 1s replaced by
the condition that there be no boundary layer, or rapid transition, in the
function f° near y = 0. This insures a unique solution for 0.

In the inner region cof the nonuniformity (the vicinity of the location
where the terms of the outer expansion become infinite in class 1 or the
vicinity of the discontinuity of the outer solution in class 5), an asymptotic
function representing the solution function is to be found by magnifying both
the independent and dependent varlables in such a way that the solution
remains uniformly valid as € - 0. Let the magnified independent variable be

Y = y/cl(e) (60&1.)

and let F = fi/Og(G) denote the assumed-analytic function (ef. discussion of
% gbove) representing (at least asymptotically) the magnified solution
function, f/oo(e), in the inner region, that is,

£(x,v,e) = £1(x,Y,e) + o¥(x,Y,¢) (60b)

where
F(x,Y,e) = £1(x,Y,¢e)/oo(e) is assumed to be )
analytic with respect to some quantity ¢4 = ei(e) >

(60c)

at € = 0 in some Di(x,Y) ; and

ql ~ 0+ exp as € - 0 with x,Y fixed. ]
All inner dependent variables (F,dF/dY, etc.) are considered to be 0(1) as

€ > 0 with Y held fixed. Substitution of equation (60b) into the differen-
tial equation of the problem for f and into the boundary conditions on f
and its derivatives at y = O requires that fl(x,Y,e) satisfy those equations
and conditions to within exponentially small amounts as € = O with x,Y
fixed. The problem for F(x,Y,e) is then determined if appropriate forms for
o1(e) and os(e) are found and if sufficient outer boundary conditions are pro-
vided by appropriate matching of the inner function to the outer function.

Some particularly useful matching relationships can be derived from the defini-
tions of the outer and inner functions (to be shown below) .

The functions eo(e), eile), o1(e), and oo(e) mist be determined
according to the specific problem. Some rules that are often useful for
determining o; and oz will be discussed later. When o3 and oo are known,
and the inner problem is set up in terms of Xx,Y,F, and ¢, one can assume €y
and €; to be the forms of the small parameter occurring explicitly in the
completely-specified outer and inner problems (including the conditions to be
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applied at the displacement surfaces in the outer problem in class 5 and the
conditions to be supplied by the matching principle in the inner problem).

For the most convenient use of the matching principle, both the outer and
inner problems may be solved in terms of a single small parameter e, = ec(e)
with respect to which both €5 and €; are analytic. For example, if
€y = el’2 and €q = €1/3, then the common form of the small parameter to use as
the expansion parameter is €g = €1/8, The assumed power series are then

£9(x,y,e) = Talx,y) + ecfalx,y) + e."Talx,y) + . . . (61)

F(x,Y,e) = F1(x,Y) + ecFalx,¥) + €oFa(x,¥) + . . . (62)

I\

which will be substituted into the inner and outer problems so that the
respective terms can be evaluated. In the subsection "Extension of the
Method . . .," (pp. 33-36) the requirement of analyticity of f© and F at
€, = 0 is relaxed, but the terms of equations (61) and (62) remain valid if
determined.

Magnifying Factors

The magnifying factors o1 and oo in equations (60) define the relation-
ship between the inner functions F(x,Y,e) and f1. The order of magnitude of
01 represents the order of the width (measured in the units of y) of the
region of nonuniformity, and 0 represents the order of magnitude of f in
that region as € — O.

For class 1, a solution that is wvalid near the singularity at y = 0 as
€ - 0 must be found by defining an inner function that is, in general, ana-
lytic as y = O and € = O according to equations (60). In the problems of
class 1, the outer expansion (expansion of f°) is the same as the formal
perturbation expansion of f(x,y,e). The proper magnification factors o2
and oo are therefore determined by comparing successive terms in the outer
expansion, observing how the nonuniformity "grows" (for every order of e
added to the expansion, a certain higher-order infinity is encountered; see
ref. l), then observing the order of the dependent variable as the singularity
is approached, and defining o¢; and o so that Y and F are of order unity
in the inner region (as € and y = 0). The terms of the inner expansion con-
tain constants of integration that must be evaluated by matching the inner and
outer expansions. The matching principle is introduced in a later section,
but it may be noted that for problems of class 1, the matching process is
equivalent to that used in the conventional inner and outer expansion method
except for the particular use of the common parameter e, here.

In problems of class 5, some simple rules have been found to be useful in
determining the magnifying factors o1 and oz. If these rules lead to a use-
ful result without contradictions in a given problem, then the choices made
for o1 and oz are valid. The first rule is: If a function denoted by w
is discontinuous (but bounded) in the outer problem (e.g., if w° cannot
satisfy a boundary condition required of w as € >0 with y held fixed),
then require
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wi = 0(1) as € > 0 with Y = y/o, held fixed (63)

The function w may be f itself or some higher order y derivative of f*.
For example (as in example problem 5b), suppose WO = dfo/dy cannot satisfy
the boundary condition required of df/dy at y = 0. Then reguire that

wi = dafi/ay = 0(1) as €~ 0 with Y fixed
Since all the magnified inner functions (F and its Y derivatives in

example 5b) are required to be O(l) as € = 0, we can then write

i
—:-—-_=O(l) as €_>O

For example problem 5b, the result is that
01/02 = O(l) as € >0

and we may let o(e) = g.(e)

= 02(e). The reasoning (for a general problem)
is as follows (Refer to fig. 1.):

The discontinuity of w° is an asymptotic

.y
y =5

) 1

wot !

w!
~
y =0 /
j\"_____:éxc, _—— /
— =W ~ = w

=0~/ g

Figure l.- Illustration of variable w +that has internal discontinuity in the outer problem.

representation of a rapid variation of w. To study the variation of w 1in
the inner region represented by that discontinuity, one must magnify the ¥y
scale (Y = y/cl) but keep the w scale fixed as € — 0. This is so because,
if the order of magnitude in the w scale were changed as € — 0, no varia-
tion of w could be observed (on the right side of fig. 1) because all the
values of w2l being considered would either become infinite or vanish as

€ > 0. Hence, in the inner solution we need wi = 0(1) as € - 0. The type
of function for which w is discontinuous at a boundary can also be referred
to for the above discussion. In the same scheme as figure 1, that function
would be as shown in figure 2. There remains one unknown magnifying factor,
which can be found by the second rule, the principle cf least degeneracy
(attributable to Van Dyke (ref. 1) in the general method of matched asymptotic
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Figure 2.- Illustration of variable w that has lost boundary condition in the outer problem.

—— W

expansions). Equations (60) are substituted into the differential equation
and the result is examined for the limiting process € = 0. As € — 0, the
equation must not degenerate into a lower order differential equation and the
most significant terms must not be lost in the first-order problem. (For
example problem 5b, then, o = €l/2.)

In problems of class 5, the outer problem is often influenced by the
inner problem, that is, there are displacement effects. Hence, €5 and €y
cannot be determined before the inner and outer problems are completely speci-
fied, including the inner boundary conditions that are not lost in the outer
problem, to be applied at the displacement surfaces, and including the outer
boundary conditions to be supplied to the inner problem by the matching prin-
ciple. The independent displacement variable ¥ (to be defined) will be seen
to contain €, so that € then occurs in the boundary conditions of the outer
problem and will also influence the inner problem through the matching process.
The choice of € therefore depends on the form of the displacement

- c
variable y.

Displacement Variables

The influence of the nonuniform region on the outer solution is known as
the displacement effect. The most common example occurs in fluid boundary
layers. The flow around a body in a uniform stream of fluid would be an
inviscid flow if the body were frictionless and if there were no other
source of viscous effects. If, however, the fluid flowing at high Reynolds
number (Re — «) adheres to the surface, most of the flow is inviscid but the
viscous effects very near the surface produce the quick-transition region or
boundary layer. The outer inviscid flow is then displaced a small distance
from the body in relation to the corresponding flow over a frictionless body.
There is a surface, which we denote as the displacement surface, that would be
the equivalent frictionless body for the outer displaced flow. (Refer to
Lighthill, ref. 33, for a discussion of displacement; also see Mangler,
ref. 3k4.)
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Any mathematical problem that contains a displacement effect (ef. example
problems 5b and 5c) can be thought of as having a displacement surface (or
more than one, depending on the number of inner boundary conditions). Let ¥y
be the coordinate normal to and measured from the actual surface where the
nonuniformity (discontinuity or lost boundary condition) occurs and ¥ (the
displacement varigble) be the coordinate measured from the displacement sur-
face, whose location is unknown. The displacement is then y -y and is, in
general, a function of the other independent variables (say x and €):

vy -F (64)

5 = og(e)A(x,e€)

where ca(e) is the order of magnitude of & as e — 0. If the displacement
is real, 1t is generally of the same order as the region of nonuniformity
(0{cg1) as € - 0), that is

Oy = 01 for & real (65)
(However, in the special case where & 1s complex, it may have a different
order of magnitude than o1; in example problem 5d, oy = € but & = 0(iel’2).)

Since the outer function f© contains no exponentially small terms, the
function 5(X,€), as the root of equation (59b), also will contain no exponen-
tially small terms, It is then compatible with the assumption that O is
analytic with respect to some €., to assume A 1is also analytic with respect
to €. Thus,

Alx,e) = p(x) + ECA2<X) + eczag(x) + ... (66)

(where, indeed, this requirement is to be accounted for in determining ec).
The terms of A are to be determined asymptotically by the inner solution

F(X,Y)e) [}

Useful relationships between the outer displacement variables and the
inner variables are:

¥ = 01¥ - ogloa(x) + e oo(x) + ePra(x) + o o L] (672)
%= x ” (670)
Y = 3/1/0'1 + (66/61) [Al(;() + Gcﬂg(;{) + GCZAQ,(;{) + . . .] (670)

For use of displacement variables in matching, define an outer displace-
ment function f°, which is a function of X, ¥, and € and is given by

%0(;(’3},6) = fO(XJY)e) (68)
and its expansion by
%O = fl(‘i)?) + ecfZ(;{)?) + eczfs(;{;?) + ... (69)

Note that equations (68) and (64) together, along with X = x, simply
represent a transformation of variables, that the power-series expansion (69)
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is equivalent to (61) (because of eq. (68)), but that generally the t, are
not the same functions of X,j as the f,, are functions of x,y (except, of
course, for the first term, f1). Naturally, n terms of the expansion of f£©
agree with n terms of FO +to the appropriate order (i.e., to 0(el™1)).
Note also that a set of displacement variables corresponding to each inner
boundary condition must be applied to O, TIn a large class of problems, how-
ever, there is only one displacement. In that case, the entire outer problem
may be transformed to displacement variables (£°,%, and §) before solving it,
or it may be solved in terms of x and y, then transformed to displacement
variables (see application to blunt-body fluid flow problem below).

The Matching Principle

Outer boundary conditions to be satisfied by the respective terms of the
inner expansion must be obtained by matching the expansion of the inner func-
tion term by term to the expansion of the outer function. The matching
referred to here is an analytical matching to obtain rigorously the form of
each term in an expansion, in contrast to frequently used approximate methods
whereby functions or expansions are "matched" (or "patched") at some arbitrary
point (cf. discussion by Van Dyke, ref. 1, p. 89, and Chang, ref. 35,
pp. 819-820). The matching principle (primarily due to Kaplun) in the conven-
tional inner and outer expansion method is expressed by equation (45). The
displacement variables to be used here are not employed there and the displace-
ment effects do not enter into the process of matching. The following para-
graphs discuss several proposed forms of the matching principle to apply in
the present approach to constructing inner and outer expansions. These pro-
posed forms are similar to Kaplun's proposition. It has been found that, in
problems of class 5, a form of the matching principle can be applied that
retains explicitly all displacement effects. The nature of the displacement
effects, as well as their role in the relationship between the inner and
outer solutions, is then more easily and completely determined than in the
conventional method.

For this discussion of matching, let superscript i denote a function
that has been transformed from outer to inner (magnified) variables and super-
script o denote a function transformed from inner to outer variables, in
addition to the previous use of fO© and £ +to denote outer and inner func-
tions. Then (f°)1 is the entire outer function transformed to inner vari-
ables. A combination of eguation (55&) written in inner variables and
equation (60b) gives

= (£9)1 4+ (go)1 - ¢t (70)

The difference (g°)1 - gl consists only of the terms of ¢° that, when
transformed to inner variables, become of larger order than O(em), where m
is some finite number, as € = 0; but those terms are then exponentially small
as Y —>oo. (In the example of eguations(51) to (53), gt - (g©)1 = X))
Thus,

£l ~ (fo)i + exp as Y - o (71)
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A direct corollary of (71) is that, to order cgeg—l in inner variables,
i L (£0)Bl 4 exp as Y = o (72)

where superscript ni dindicates n terms of an expansion written in inner
variables. Note that for class 1 g! = gq° = 0 and there is no difference
between ft and (£0)1. (In class 1 the only difference is in the expansions.)
The asymptotic relations (71) and (72) are valid in regard to any function f
for which f© and f1 can be defined by equations (55) and (60). Equa-

tions (71) and (72) are useful in themselves only if the complete unexpanded
outer function (or its form) is known. However, generally useful forms of the
asymptotic relation for the termwise matching of expansion solutions can be
deduced directly from the form (72) (as seen below).

In the present matching procedure, when an outer expansion is to be
matched to an inner expansion, the outer will always be written in terms of
the displacement variables X,y. The superscript "no" will indicate n terms
of the expansion of f°(X%,¥,e) (see egs. (68) and (69)). Thus, the n term
expansions to be matched are:

10 = £1(%,5) + ecfa(%,7) + ePTa(X,3) + . . . + B2y (%,5) (73)

I

[

3 = go(e) [Fo(x,Y) + eoFa(x,Y) + .. . + el71F, (x,Y)] (74)
If the transformation by equations (67a) and (67b) is used in (73), and if the
transformation by equations (67b) and (67c) is substituted into (74), one
obtains (f70)1 and (£n1)0, respectively. If these expansions are then trun-
cated to n terms (i.e., to order eB-1 in outer variables and to order
ozeg * in inner variables), one has C(fno)n1 and (fnijyno,

If the first n terms (to order €g 1) of an expansion of f° contain
all the terms of f© +that would appear in the first n terms in inner vari-
ables, (£fO)01) then the quantity £° in (72) can be replaced by fB°., This
condition is apparently satisfied in problems of class 5 if all of the

following (to be discussed) are true:

(a) the outer expansion is first written in
displacement varisbles (eq. (73));

(v) there is only one displacement in the function (75)
being matched; and

(¢) 3 = 0(oy) as € - 0.
Then
g (an)ni + exp as Y - o, (class 5) (76)
In class 5 (as defined in pp. 4-13), there are no negative powers of y in

the expansions of the fn for small y. Then the terms of f°© that are
0(el"), when transformed to inner variables, will become at least as small as
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order ozel™* for each n. Then, if (75a,b,c) are satisfied, the terms of

the displacement in the outer solution that will affect the nth-order inner
problem are not lost upon truncation of the outer expansion at n terms and
the terms of the displacement that affect the nth inner problem are also
carried along in the transformation of f£1© by equation (67a) to inner vari-
ables. (These statements are easily checked in any given problem.) The
respective terms of the expansion of the displacement can then be evaluated in
the inner solution to satisfy (76) exponentially. In example problem 5b,
(y,e) =y - €1/2A; and T° = § = £1°, Thus, £1° contains the first-order
displacement (the entire displacement in this case)., Transformation to inner
variables then gives (£10)21 = ¢1/2(y - A;), which carries along the first-
order displacement, to be evaluated by compatibility w1th the first inner
solution. If (75b) is not satisfied, that is, if f° contains more than one
displacement in a given problem (because of more than one displaced boundary
condition to be satisfied by the outer function), then all the nth order
displacements cannot in general be carried through the above process without
some loss. However, if the terms of only one displacement (expanded in ec)
appear in an expansion of some derivative or function, then the matching rule
can be used for that function using the appropriate displacement variables.
(This occurs in example problem Se.) If (75c) is not satisfied (i.e., if
is larger than 0(g1) as € - 0), which is possible if & is complex (ef.
example problem 5d), then it may not appear possible to satisfy (76). (In
problems where this occurs, the matching rule in the conventional method of
matched asymptotic expansions also does not work unless one resorts to finding
an intermediate expansion (cf. ref. 1). In the present method, although the
relation (72) is valid and could be used if & were known completely, the
relation (76) in that precise form may not work if & is larger than o)
because significant terms do not appear in fPC that must appear in the
asymptotic limit of f£P1, and f%' can then not match asymptotically to
(fno)0L,  The correct order of magnitude of &, and consequently the proper
form to replace f2° in (76), can then be determined by using the concept of
the intermediate expansion. A displaced intermediate-expansion solution
replaces 10 in the matching rule and is determined by setting y = €% - 8,
o = er; specifying B in terms of o so that w is 0(1) in the inter-
mediate region; and determining o so that oy = e (where & = OSA) and so
as to make possible the matching of the intermediate displacement expansion
with the inner solution. Since y = 0(3) in the "overlap" region where the
matching is to be accomplished and for which an intermediate expansion is
needed, this procedure makes A = 0(1) in "§-space" in the intermediate prob-
lem and determines the ¥F-space where the overlap is possible. Then the
large complex displacement, which caused the need for the intermediate expan-
sion for matching, i1s determined in the matching process. In example prob-
lem 5d, where o1 = € and w = df/dy, it is found that B = o = 1/2.

In classes of problems where the approach of the individual terms of the
inner solution to the respective terms of the outer solution is not necessar-
ily exponential, the asymptotic relation (72) can be replaced only by

£l (fno)ni + smaller alg as Y - © (77)

where Y = 0 1is the locus of the nonuniformity and where "smaller alg as
Y - " means algebraically decreasing terms that are smaller as Y = ®© than
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those contained in (fno)nl. The appearance of the algebraically decaying
terms in (77) (e.g., for class 1), as opposed to the exponential approach in
class 5, is caused by the singularity at y = O in the outer expansion. The
negative powers of y 1in the outer expansion, when transformed to inner vari-
ables, introduce terms of lower order in € 1in the terms to be matched by the
terms of the inner expansion. Each successive term of higher order in e in
the outer expansion contributes terms to the lowest and succeeding orders in
the inner solution. In example problem 1, where o031 = 1/0s = €o = €1/2, the
first term of the inner expansion 1is

1l o 12l iy 4 (Y2 4 2)1/2] = 720y L (293) 7t 4 (2¥S)Tr 4 . L L]

which can match to (£1°)11 = ¢71/2y"1 only to within algebraically decaying
terms as Y — o, Only additional higher orders in the outer expansion of £
can account for these additional terms in the expansion of f1* for large Y.
The matching rule (77) allows for the extra algebraic terms.

A form of the matching principle, which is analogous to Kaplun's matching
rule (hS) in the conventional inner and outer expansion method, can be used in
the present method in any of the classes of problems discussed above. If
(£R1)19 (Gefined after eq. (T4)) is written in inner variables and then trun-
cated at n terms, one has [(fni)NO]NLl,  Then a result corresponding to

equation (L5) is
[(enf)nond = (gho)nt (78)

For problems in which & = 0 (including all of class 1), equation (78) is
equivalent to (45). As in equation (45), the displacements occurring in prob-
lems of class 5 are not retained in the matching by equation (78). The form
(78) is conveniently used to evaluate constants of integration in a closed-
form inner solution, but if explicit asymptotic outer boundary conditions for
the inner problem must be known before the differential equations in the inner
problem are solved, they are conveniently provided by the asymptotic form of
the matching principle given by (76) or (77). It was noted above that if f©
contains more than one displacement in class 5, then (76) does not apply. In
that case, either (45) or (78) is suitable.

The important results of this section are summarized as follows:

In classes 1, 2, 3: £ = (£9)™ (792a)
In classes 4, 5: £2% ~ (£0)™ 4+ exp as Y - » (79b)
In classes 1, 2, 3, 4: TRl (£10Y01 ¢ gmaller alg as Y » @ (80a)

In class 5 with conditions (75): TR (an)ni + exp as Y -~ (80b)
Tn classes 1, 2, 3, 4, 5: [(gni)nojni o (gnojni (81)
Worthy of special note is the fact that, even for a problem in which it

can be shown that a boundary -layer solution must go exponentially to an outer
solution ((79b) is satisfied), the respective terms may approach algebraically
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to the terms of the outer solution according to (80a) if the outer expansion
contains negative powers of y. This occurs in class L4, of which two examples
are provided above (p. 9).

The Composite Solution

The outer and inner solutions may be cormbined, if desired, into a single
composite expansion that is uniformly wvalid to appropriate orders in both the
outer and inner regions. A rule for forming the composite solution is
directly analogous to equation (46). It may be stated as

fFnc = pni 4 pnO _ (pno)ni (82)

where f1C¢ is the composite expansion to nth order. DNote that f1O and
(£ro) in this method have a different meaning than in equation (L46).

Matching of Several Functions

In a given problem one may wish (or need) to expand more than one
function in asymptotic series and to match the several inner and outer func-
tions. A singular perturbation problem may, of course, consist of a system of
equations for which the order is reduced in the outer limiting process. HEven
in a problem with only one equation for one dependent variable £, the deriva-
tives fx, fy, fyy) etc., may be considered as different functions. EHEach such
Tunction, say g, should match according to the matching principle, with f,
£°, F, etc., replaced by g, g°, G, etc., in the above development, and with
0> replaced by o,. When g is some function other than a derivative of £,
Og can be determined from the governing equations.

Extension of the Method to a Class of Problems With Outer and
Inner Functions Nonanalytic at € = 0

If it is suspected or found that nonpowers of €. will occur in some
higher orders in the procedure outlined above, then the inner and outer func-
tions can be redefined as the sums of convergent series like f£¥* 1in equa-
tion (49). For the purpose of matching by (76) in class 5, the class of
problems considered should then be restricted to those for which the first N
terms in the expansions, which are to be determined, contain only powers of
€c. For the (N + 1)st and higher order terms, (76) may not be applicable.

Consider a continuous function f(x,y,e) with the asymptotic expansion
(47), where ¢, = 1 and ¢u(e) = olpy-,(e)] as e > 0 and with the additional
requirement on the asymptotic sequence {¢,} that for each ¢,(e) there is some
m > 0 such that

e™ = olg,(e)] as € = 0 (83)

Thus, the sequence {@,} may contain terms with factors like e®(log €)™t or

e® log €, but excludes terms like, for example, e 1/€. As in equation (L49),
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let f* be the sum of the series of terms ¢,f, only:

0

£* = Ez onle)fpn(x,y) in D*(x,y) (84)
n=1

which converges for sufficiently small € in some domain D*(x,y). (It can
be shown (e.g., see ref. 32) that if (L7) converges at some (x,y), such as
where a boundary condition is applied that either has a finite number of terms
or is a convergent infinite-series expansion of the same form as in (&7), then
(47) converges in some neighborhood D¥(x,y) of that location.) Then

f(x)yJe) = f*(X;Y)e) + (I*(X)Y)e) (85)
where
a*(x,y,e) ~ O + exp as € >0 (86)

A convenlent illustration of a typical function £¥* can be made as in
equations (51) to (53) by adding a term % log ¢/(1 + y) to the right side of
equations (5la) and (5ic). In terms of y = €Y, equations (52a) and (53Db)
would then have an additional term €4 log ¢/(1l + €Y) on the right side and

equation (52b) would have an additional % (-1)9YJ(eJ™ log €) on the right.
J=0

For the asymptotic expansion method, outer and magnified inner functions
that are sums of convergent series in some domain are used (like £f¥ and ¥ in
equations (51) to (53) with the additions noted sbove). Thus, it is assumed
that

£(x,y,¢) = £9(x,y,¢) + ¢°(x,y,¢) }
where
o0
£0(x,y,€) = }: op(e)f (x,y)  in some D(x,y)
n=1 > (87)
¢, =1, o, (e) = olgy-1(e)], em=o[(p(e)], m>0 as e~ 0;
o - ~ J
q°(x,y,€) ~ 0 + exp as € > 0 with x,y fixed
and that
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£(x,y,e) = £1(x,Y,e) + qi(x,¥,¢) w

where
Y = y/oy(e)
F(X;Y;e) = fi(x;Y:G)/Uz(e)
N : (88)
= Z o,(e)Fy(x,Y) in some D(x,Y)
n=1
o1 = 1, ¢,(e) = olo,_,(e)], €™ = oloy(e)], m>0 as e - 0;
qi(x,Y,e) ~ 0 + exp as € > 0 with x,Y fixed J

The remainder of the development is the same as in the preceding subsections
(pp. 16 £f) except that the asymptotic sequences {p,(e)} and {o,(e)} mst be
determined by some means as in the conventional inner- and outer~-expansion
approach (ref. 1). Since the satisfaction by f£© of a boundary condition on
f determines the displacement &(x,e) (see subsections entitled "Definitions
of inner and outer functions," pp. 21-25; and "Displacement Variables,"

Pp. 27-29), the displacement may have the expansion (ef. eq. (64)).

5 = ca(e)A(x,e) = 08(6) }: o (e)an (x) (89)

n=21

The displacement variables are then

o0
Y=y -0%=o01Y - 0y Ez pnle)an(x)
et (90a)
X =x
£0(%,¥,e) = £2(x,v,€) (90b)
and the expansion of FO  ig
o0
55,6) = ) onle)EE,) (1)
n=1
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From equations (87) and (88), equation (70) still applies and (g®)1 - g1
contains only terms that are changed from order exponentially small as € = O
with x,y fixed to the order of some Op(e) as € —» 0 with x,Y fixed.
These terms then decay exponentially to zero as Y — o, Thus equation (71)
still applies, and to order o=(e)dy(e) in inner varisbles, equation (72)
applies. Now let f° denote n terms of fO(X,¥,e):

n

£no - Z () Fn(%,5) ' (92a)
m=21
and n
T 62(6)252 oy (e)Fp(x,Y) (92b)

m=1

and let (£10)?1  genote the terms to order o2(e)on(e) in equation (92a) after
it has been transformed by equation (90a) to x,Y wvariables., Then the match-
ing rule (76) applies 1f f1O  contains all the parts of f© +that would
appear in (fO)NLl; that is, f© can be replaced by flO in equation (72) if
this condition is satisfied. At least to some order N for which

ople) = @n(e) = [ea(e)1™7h for all n <N (93)

this condition is satisfied if conditions (75) are met, If equation (93) is
true for some N but conditions (75) are not met, then either an intermediate
expansion is needed to replace fH1O in equation (76) or else equation (77)
applies (for n < N), as discussed under The Matching Principle.

If for some N it is found that for n > N terms with nonpowers of ¢
occur, then at least Kaplun's standard matching rule (eq. (45) or (78)) can
be used.

APPLICATION OF THE METHOD WITH DISPLACEMENT VARTABLES
TO HYPERSONIC VISCOUS FLOW OVER A SPHERE

The purpose of this section is to apply the method developed above to the
problem of hypersonic viscous flow over a sphere at high Reynolds nunber.
This application is limited to cases for which external (shock-generated) vor -
ticity has only second-order (and higher) effects on the solution for the
viscous flow near the body. It will be seen that this limitation requires
that the shock density ratio be not too small, (A 1list of references on the
viscous blunt-body problem is given in reference 30.)

It has been pointed out (ref. 30) that the second-order effects of
external vorticity and displacement are "kindred effects" and that they are
"global in nature” and, as such, are much more difficult to calculate than
other second-order effects. In the point of view of the present approach, the
presence of external vorticity is responsible for higher order displacements,
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so that the inner boundary for the outer problem is affected to each
successive order of the small parameter. Using the present approach, the
displacement effects are determined in the matching process and subsequent
solution of the inner problems.

After definition of the mathematical model for the problem to be solved,
and subsequent application of the procedure to obtain the asymptotic expan-
sions, the results will be compared with a nmumerical solution of the model
problem,

The Mathematical Model for Hypersonic Viscous
Flow Over a Sphere

This approximate application to viscous flow is not intended as a
thorough treatment of the hypersonic blunt-body problem for all regimes of
flight (see, e.g., analyses in refs. 27 and 36-46). The object here is to
isolate the role of the matching principle as much as possible and, in partic-
ular, the role of displacement in the matching. The mathematical model will
therefore be kept as simple as possible so that the basic principles will not
be obscured by too much detail. To achieve this, a number of important
aspects of some regimes of flight in the physical problem are ignored in favor
of the desired simplicity. The model must, however, retain the essential
character that we are studying. Simplifications that do not change the essen-
tial character of the problem are the assumptions of: (l) constant density
and viscosity behind the shock wave, (2) local similarity near the stagnation
streamline (includes shock wave concentric with the body), and (3) discontin-
uous properties across the shock wave, determined by Rankine-Hugoniot equa-
tions. Alsoc, the low-density effects of velocity slip and temperature Jjump
are specifically neglected (ref. 47). All these assumptions and approxima-
tions have been used and discussed by various authors. Included in the char-
acteristics of the problem that must be retained are: curved body, curved
detached shock wave, and consideration of the full governing equations
(Navier—Stokes). In the present treatment, curvature effects will be retained
implicitly (by a transformation of coordinates), and need not be considered as
second order or otherwise. The gas immediately behind the shock wave can be
assumed to be in thermodynamic equilibrium for evaluation of conditions there.
The flow is assumed to be steady.

The Navier-Stokes equations for conservation of mass and momentum are:
>
v . (pV)=0 (ok)
- - —>
p(V « v)V + vp = w?V (95)

where v 1is the vector operator "grad," p the local mass density, p the
pressure, V the velocity vector, and p the viscosity coefficient (assumed
constant), and where the equation of state for the flow between the shock wave
and the body 1is taken to be

(96)

p = constant = Ps
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(subscript 2 denotes a value immediately behind the shock on the axis of
symmetry). Because of equation (96), the energy equation is uncoupled from
the others and is not needed in the present analysis (except in finding
conditions across the shock wave).

Consider axisymmetric spherical coordinates (r,w) with r measured from
the sphere center and ¢ measured from the forward axial streamline (fig. 3).
Let the radius of the spherical
body be 1, and that of the
detached concentric shock wave
(near the axis) be rg=ry(1 + d).
Denote free-stream conditions by
subscript . Let the velocity
components, respectively tangen-
tial and normal to the body, be
Vol and Vv, so that u and v are
dimensionless and V=V ,yu2 + v2
is the velocity magnitude. Define
a dimensionless pressure function

?=(p -1, /0 V. 2; and denote the

C0 "Co
shock density ratio by k = Qw/pg.
The boundary conditions for the
flow near the axis (taken to be
the no-slip surface conditions and
the Rankine-Hugoniot shock condi-
tions) in terms of these dimension-
less variables are:

Figure 3.- Configuration for sphere in hypersonic flow.

At r=m:
u=v=0 (97)
At r=rs=rb(l+d): |
v = -k cos ¢ (98a)
u = sin @ (98b)
Pp=(1L-Kk)cos® o (98c)

For complete determination of conditions behind the shock, one needs to
include also in the Rankine-Hugoniot conditions the energy relation across the

shock:
At r = rg:

h + % VE = nh o+ %-sz (984)

where h 1is the specific enthalpy, and an equation of state
h = h(p,p) (98e)
that may be represented, for example, by equilibrium air charts or tables.
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If equations (94) and (95) are put in terms of the coordinates r and 0,
conservation of mass (eq. (94)) is satisfied by definition of a dimensionless
Stokes stream function V¥ by

2
r %% =u <§%> sin @

(99)
2
ov _ I g
acp— -V r_b sin @
For convenience, we define a transformation
¢t = log(r/rb) (100a)

so that

T éé;l = éégl (100Db)

(Note that in terms of physical distance from the body surface, Ty, the new
variable € is

¢ = log(l +y) =y + 0(y%) (100¢)
and so is the same as y +to first order for small distances. Thus, the
varisble { is convenient both as a spherical coordinate in the outer problem,

since it will simplify the equations, and as a boundary-layer variable.) With
a Reynolds number defined as

p V. r o Vr
Rzi—@—l=£k<ﬂ—> (101)
2 MZ l"Loo

the components of the momentum equation (95) become

Wiy + Vi +uv - R_le'g[ugg +oup 2v¢ - u(sin @)%

+ (cot Pug + u¢®] = —k§¢ (102a)
uv¢ + Ve - u? - R_le'c[vgg + Ve - 2V + Vg - 2ucp

+ (cot @)(v¢ -2u)] = —kﬁt (102b)

where subscripts ¢ and { denote partial differentiation with respect to the
corresponding independent wvariables. Equations (102) may then be combined by

cross-differentiating and by equating ﬁé@ to §¢C to eliminate pressure.

Equations (99) with the transformation (100) may then be inserted to obtain a
nonlinear partial differential equation for the single dependent variable
in terms of the independent variables ¢,f{ and the parameter R. The result
is
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Vebpeg - 2(cot Opbpy - Vebpg + 2(cot @wgz + VeV
- 3 (cot Qpligp + 3(cot® o - DYup - V¥per = Volppt
+ Sglre + Mgl * (ot Al Ve - bk (cot gv®
= R"%eb sin OL¥pppp = G + LLhpp - 60 - 2(cot qlppg
+ 2w§§®@ - 6¢§@® + 6(cot<p)1|fCCP - (9 cot ¢ + 3 cot® cp)qrcp

+ (8 + 3 cot?® @)v

o0 2 (cot cp)\vcpw + %WPJ (103)

The boundary conditions for 1V, obtained from equations (97) and (98), are:

At € = 0:
Ve =¥y = 0 (10k4a)
At (=t = log(l + d):
w¢ = k(1 + d)® sin® ¢ cot @ (105a)
Ve = (L + d)® sin® o (105b)
and

Ve = (08 D® = Vlpr + Yl - VRTH(L + d)sin olygeg
- 3Wpp + 2V + Ve = (ot Dy - 20 + 2 (cot O]

= 2k(1 - k)(1 + d)* sin* @ cot o (105¢)

where one can take either v = 0 or v = 1 for the model (discussed below).
Without loss of generality one can, of course, replace the condition W@ =0
in conditions (10k4a) with

¢ =0, ¥ =0 (10kp)

Condition (105¢) with v = 1 was obtained by first differentiating
condition (98c) with respect to ® and combining the result with equa-
tion (102a). Thus, v = 1 implies strict application of the Rankine-Hugoniot
shock conditions (eq. (98)). However, since those conditions are derived
assuming inviscid flow on both sides of the shock, one might just as well take
v = 0 (ref. 48). The condition with v = 1 is more consistent with the
Rankine-Hugoniot conditions, but the condition with v = 0 1is simpler. 1In
any case, the value of v does not affect the perturbation problem in the
first- and second-order solutions (refs. 46 and 148). (Some subsequent work
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shows that this is true only if, as assumed here, the vorticity interaction is
not greater than a second-order effect.) Moreover, the differences in results
calculated for the two values of v in the exact solution could be taken as
an indicator of the influence of neglecting the shock-wave-viscosity effects
on the flow behind the shock.

Equation (103) and boundary conditions (104) and (105) contain two
independent parameters, k and R. The dimensionless shock detachment distance,
d, is an unknown function of k and R, to be determined in the solution.

Solution of the Problem by Assumed Power-Series
Expansions With Displacement Variables

The problem of equations (103), (104), and (105) is to be solved
asymptotically for V(¢,f,k,1/R) as 1/R = O. The parameter k 1is assumed to
be nonvanishing as l/R > 0. The result of substituting

¥(9,6,%,1/R) ~ ¥ (9,{,k)  as L/R>0 (106)

into equations (103), (104), and (105) is that the order of the partial
differential equation is reduced and the no-slip condition, ¥y = 0 on § = O,
cannot be satisfied. This problem is known (and will be seen) to belong to
class 5, as defined sbove (pp. 5-9), and will be treated as a problem of that
class.

The outer function representing the stream function.- According to the
method outlined above (cf. eq. (55a)), let

W(@:ng:l/R) = WO<@:§)k:l/R) + qp(@’gyk;l/R) (107)
and assume
a(k,1/R) = d°(k,1/R) + q4(k,1/R) (108)

where ° and d° are assumed to be analytic with respect to some ¢ = e(1/R)
at 1/R = 0 so that

¢°(¢;§,k,l/R)

a°(k,1/R)

Vo (@,6,%) + v (0,6,k) + 2 (9,6,k) + . . . (109)

d1(k) + edo(k) + €2as(k) + . . . (110)

I

and where

q° ~ 0 + exp as 1/R - 0 with o,{,k fixed

(111)
qq ~ O + exp as 1/R » 0 with k fixed

Since the limit function V¥, in (106) was found to be a nonuniform represen-
tation of ¥ at € = 0, by equation (107), the outer function ¥° represents
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¥ to within exponentially small amounts (q°) as € - 0 everywhere except at
¢t = 0. Then substitution of equations (107) and (108) into (103), (104), and
(105) shows that V° must satisfy equations(103), (104), and (105) with 4
replaced by d° and with V¥ replaced by VO at all § except very near

¢ = 0. According to the method outlined above, then, since wi = ¥ is the
function that cannot satisfy a boundary condition at ¢ = 0, that condition is
not required of w° = ¥®; but the condition ¥ = O can also be required of
YO if it is allowed to be satisfied at a displaced boundary { = & (see

p. 23), with the displacement 8 to be determined by compatibility with the
inner solution. Assuming that © 1is real in this problem (see subsection
"Displacement Variables," pp. 27-29), we can write

8 /o1 = Mo,k,1/R) = A1(,k) + eto(9,k) + eAs(p,k) + . . . (112)

where o1 = 01(1/R) (to be determined) represents the order of magnitude of
the width of the nomuniform region measured in units of . The problem for
¥© has now been derived as: equation (103) with V¥ replaced by V©; and the
boundary conditions:

{=o018, V=0 (113a)

¢ = log(l + d°):
w@O = k(1 + d°)% sin® ¢ cot @ (113Dp)
wgo = (1 + a°)2 sin® o (113c)

and
{condition (105c) with ¥ replaced by ¥° and d by a°} (1134a)

The quantities e = e(1/R), o1 = 01(1/R), A = A9,k,1/R), and d°(k,1/R) are to
be determined. DNote that o0¢14A 1is a displacement of the independent variable
{ and is therefore proportional to the actual displacement distance to first
order only (see eg. (100c)).

A dimensionless magnified viscous-flow displacement, A', of the ¥y
coordinate may be defined, with use of equation (lOOc), by

(e® - 1) /o1 (11k)

i

A' = yg /o1

The displacement distance is related to the shock standoff distance as follows.

Denote by rgy = 1y (yg + 1) the radius of the frictionless body that would
produce the flow field that corresponds to the actual outer flow when viscos-
ity is present (ef. ref. 33). The shock standoff distance from the equivalent
frictionless body is denoted by rgd* (rig. 3); from the actual body, it is
rpd. (For v = 0, d* = dj. (given by the inviscid solution of Lighthill).

For v =1, d*¥ will depend on R, but not to the order to be considered here,
that is, a* = dy + vO(1/R). However, the complete solution for d* 1is shown
at the end of this section for the comparison of the asymptotic expansion for
A'  with the exact solution of the model problem.) The shock radius is then

k2
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Ty = rb(l + d) = ra(l + dx) (115)

The dimensionless magnified displacement is then given by

g _Ts ~ Ip a - a*
t = — = =
Al = oL O'lI'-b O'l(l + d*) (116)
Equating (114) and (116) gives the relationship between d - d*% and &:
4 - a* = (1L+ ax)(e® - 1) (117)

Note now from equation (117) that, since d¥ and & are analytic with respect
to e at e =0, so also is d. Then dg = O in equation (108) and

d° = d = d;(k) + edo(k) + 2daz(k) + . . . (118)

The assumptions of the concentric shock and local similarity of the flow
solution require the dimensionless standoff distance, d, and Ty both to be
functions only of k and R, not varying with .

The displacement varisbles ¢ and t are defined (cf. egs. (64) and (67))
by:

D=0, t=¢-aa (1192)

The outer displacement dependent variasble (ef. egs. (68) and (69)) is defined
by

¥o(p,¢,k,1/R) (119v)

(8,8 ,%,1/R)

Il

qfl(ngE:k) + G‘TIZ(EP;Z:k) + ezqfs(&:'g:k) + ... (119C)

Substitution of equations (109), (112), and (118) into the differential equa-
tion for ¥°, (103), and into the conditions (113) and letting 1/R - 0 (so
that also the as yet unknown quantities € and o1 <vanish) gives the problem
for V3. In finding the boundary conditions for Vi 1t is assumed that ©
is analytic with respect to § at § = 01A and at . The condition at

£ = 01/ 1is then transferred to § = 0 by Maclaurin's series, from which

¥(p,018) = ¥2(9,0) + 0124¢°(9,0) + (1/21)(028)%¥7 (9,0) + . . . =0 (120)

and into which equations (109) and (112) must be substituted. Similarly, the
conditions at the shock [{ = {, = log(l + d)] are expressed in terms of
conditions at

g, = Log(l + d1) (121a)
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where

d2 2 d3 1 d2 =
€s = ey =€ <i T di> e [1 Fa, 2\I+ady) |7 (1210)

by means of Taylor's series.

Solution of the first outer problem.- The resulting problem for wl is

VoeVateg - 2(cot OV ¥ pr - ¥ b g + 2(cot B e + VeV po0
- 3(COt(®Wl§Wl¢@ + 3(cot® @ - l)¢1$w1§ B wl@wlggg B W1®¢§w1¢

. _ 2 _
+ 5W1¢W1CC + by +(cot<@¢l¢¢l@§ M(cotc@wl¢ 0 (1222a)

1@W1¢@

with the conditions

¥1(9,0) =0 (122D)
ng(@,ésl) = (1 + d1)2 sin® ¢ (122¢)
wl¢(@,gsl) = k(1 + d1)2 sin® @ cot o (1224)

and

[¢1§W1¢C -'@Ot(wwlgz - ¢l¢¢l§§ + Wlwwng _
Q“C51

= 2k(1 - kK)(1L + d1)* sin?® ¢ cot o (122¢e)
This problem has the separable solution
¥, = @Ein® gri(f) (123)
where fl(g) is found from the separated ordinary differential equation
™ - 5F." + 2F1' + 8Ff1 = 0O (12k)

(where ( )' generally denotes differentiation of a function with respect to
its argument) and has the form
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]
il

clle4§ + clge2§ + Clge-g (125a)

Cll(r/rb)4 + Clz(r/rb)z + Cls(r/rb)_l (125b)

I

a10 + a11f + a1st® + a1at® + . . . (125¢)

1

This is the well-known solution of Lighthill (ref. 49) for the inviscid flow
over a sphere. The boundary conditions determine that

Ci1 = (1 - x¥)&/10x(1 + a41)%
Cie = (bk - 1)/6k (1262)
Ciz = (1 - k)(L - 6k)(1 + d1)%/15k

and that the function d;
obtained from

d;,(k) is the solution of the algebraic equation

il

Ci1 + Cis + C13 =0 (126b)

The constants in equation (125c¢) will be needed for matching to the inner
solution and are easily found to be:

alo = 0 (127a)
_ 2
a1, = 4Cq11 + 2C1o = C1a = élz {:él-l-—d}f% + 4k - l} (127b)
RY-)
a1s = 8C11 + 2Cqo + % Cig = ﬁi [%{1:—5%%5 + Uk - 1] (127¢)
ERY-)
aisz = %2 Ci1 + %Clg - %‘ Cis = ]_:Iék |:L?](—l+ %2 + 3()4-1{ - l)jl

ajliy a1o
+ 5 —=—

3 3 (1274)

The significance of the constants ai; and a;» can be observed from the fact
that the dimensionless velocity u and the dimensionless vorticity

W = (rb/Wm)(v X V) at the body surface in the first-order inviscid solution
are:

u, =ap;; sing, W, = (a11 - 2a12)sin ¢ (128)
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To find the terms for the higher order outer solutions (wz,ws, etc.) the
parameters € = e(1/R) and o1 = 01(1/R) must be known. Therefore, the inner
problem (of determining the inner function ¥i, to be defined) must be formu-
lated. Outer boundary conditions for the inner problem will need to be
supplied by the matching principle which, in the present approach, uses the
displacement variables. For that purpose, the first term in the outer dis-
placement expansion (119c) is found as follows: From equations (109), (119b),

and (119c),
V2($,8,%) = ¥, (9,t,k) + 0o(e) (129)

Into the right side of equation (129) we then substitute (123), (125c), and
the transformation (119a) to obtain

¥y = sin® 5(allg + alzgz + alsg3 + 0. .) (130)

) The inner function representing the stream function.- The inner function
¥1, which represents V¥, at least asymptotically, in the inner region as
l/R - 0, is found by magnifying the varlables in such a way that the nonuni-
formity of the problem (reduced-order differential equation with loss of a
boundary condition as 1/R = 0) is removed. Following the method outlined
above, one can define magnified variables Z and ¥ such that (ef. egs. (60))

z=t/oy (131a)
and
¥(9,2,k,1/R) = (1/02)¥"(9,%,k,1/R) (131b)
where
¥(0,6,%,1/R) = ¥ (9,2,%,1/R) + a'(p,2,k,1/R) (132)

and ¥ is assumed to be analytic with respect to some € = €(1/R) at 1/R =0
so that

¥(0,Z,k,1/R) = ¥1(9,Z,k) + e¥s(p,Z,k) + e=¥s(0,Z,k) + . . . (133)
and where
o (9,2,%,1/R) ~ 0 + exp  as 1/R - O with ¢,%,k fixed (13h)

The quantities e = €(1/R), o1 = 01(1/R), and oz = 02(1/R) are to be
determined.

Substitution of equations (131) through (134) into the boundary
conditions (10L4a) and (104b) shows that ¥ must satisfy the conditions

¥ =¥, =0 at Z =0 (135)

To determine ¢1 and op, consider the rules stated under Magnifying
Factors. First, since the function that does not satisfy one of the inner
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e

boundary conditions in the outer solution is w° = wgo, we require that Wci

be 0(1) in the inner region (as 1/R —» O with Z fixed). Then, from
equations (131)

ng = (02 /01)¥, = 0(1) as 1/R = 0 with Z fixed

and, since Y, = 0(1) as 1/R » 0 in the inner region, we take, without loss of
generality,

6L =02 =0 (136a)

If equations (131) through (134) are substituted into the differential equa-
tion (103), and if the eguation is then multiplied by o, and l/R is made to
go to zero, application of the principle of least degeneracy requires that

o“R = 0(1) as 1/R > 0

so that

G = R-l/2 (136b)

The inner problem is the problem for Y(®,Z,k,l/R) which is composed of
conditions (135), additional outer conditions to be supplied by the matching
principle, and the differential equation (103) with equations (131) and (132)
substituted. Except for the outer boundary conditions, the inner problem for
¥ contains only integral powers of l/R. However, the outer problem contains
o = R™1/2 in its inner boundary condition, and it will be seen that R~%/2
also occurs explicitly in the outer conditions supplied to the inner problem
by the matching principle, Hence, as described above, we then assume that
R-1/2

e = (137)
is the form of the small parameter with respect to which V° and ¥ are
analytic at € = 0.

Solution of the second outer problem, - The problems for the respective
terms of the outer expansion (109) are determined by substituting equa-
tions (109), (110), and (118) into the problem for ° as stated in the sub-
section "The outer function representing the stream function,” pp. L41l-4h4, The
problem for V, 1is given by equations (122) with the solution given by equa-
tions (123) through (126). The problem for ¥, contains a great deal more
terms than the problem for V,, and so will not be written out here. Note,
however, that the condition on V5, from equation (113a) is

¥, (9,0) = A1y, ¢ (@,0)

which contains the unknown A;. The problem for Wz can be solved at this
point if the form of A; is known. To continue the assumption of local
similarity in the higher-order outer solutions, we need to have the displace-
ment surface concentric with the body near the axis (i.e., A = constant),
like the shock wave. Let us carry on with this assumption to find the second
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outer solution, but then solve the first inner problem, without making the
assumption a priori there, to determine the actual significance of assuming a
concentric displacement surface (i.e., of taking A; to be independent of ¢
near ¢ = 0). The second outer problem has the separable solution (found in a
different form by Van Dyke, ref. 30):

¥y = (sin® @ra(f) (138)

where fo(£) is the solution to the ordinary differential equation
£R - 5+ 2ff + 8fp = 0 (139)

Equation (139) has the same form as (12L), and so has the solution

£2(¢) 26 . Czse_C (140a)

02164C + Cope

apo + a21§ + a22§2 + . . . (lLFOb)

i

The boundary conditions for YV, and those for V., lead to determination of
the constants Csi1, Cso, Cos, and do. They are found to be

021 = "(l - k)gdg/Sk(l + dl)s » 022 = 0
(1h1a)
Cosz = (1 - k)(1 - 6k)as(l + d1)%/5k
and, with
Co1 + Coz + Coz = -Mjai1a (141b)
ds 1is determined explicitly as
do = (l + dl)Al (l)-FlC)

(Note that this result can be obtained directly from expanding equation (117)
and using (112) and (118). When As is known, one similarly obtains the
further result that ds = (1 + d1)(&e + A13/2).) For a given k, the quantity
d1 1in equations (141) is known from the first outer solution. The value of
Ay must be obtained from the first inner solution. For use in the matching,
the constants in equation (140p) are found to be

il
I

a0 -a11fy ’ ap1 = (2a11 - 2a12)A;

(1h2)
(1/3)(Taz1 - 13ai2)A:

1

(a11 - 3212)21 , agz3

il

aop

The same procedure that was used to obtain equation (130) from one term of
wo now leads to two terms of U° corresponding to two terms of ©:

~ . ~ by ~p ~3
VO = sin® ${(a11f + a1sl” + a1zl + . . )

+ e[ (2a1201 + ael)z + (3a13/; + azz)zz + . . .] + 0(e3)} (143)



Upon comparing equation (143) with (119¢c) we see that @2 is the factor
mltiplying e in (143).

Outer houndary conditions for the inner problem, - Equation (143) is used
to find the outer boundary conditions for the inner problem. The terms to
order € in equation (143) constitute ¥2° (cf. eq. (73)). From equa-
tions(112), (119a), and (131a) we have

=9, C=c(@-ay)-¢€2-¢e%g-... (L)
which, when substituted into ¥2°, lead to
(¥2°)21 = sin? feaa(Z - A1) + €2[a12(2 - £1)%

+ (azy + 2a1201)(2 - A1) - 211801} (145)

as defined in the discussion following equation (Yh). The matching principle
(76) requires that

21 . (y20)21 o oxp as 7, — o (146)
Where
1‘1'21 = €\l/l + €2\Y2 (l)-l-r?)

(ef. eq. (74)). From equations (145), (146), and (147) we then find the outer
boundary conditions for V¥, and ¥s:

¥; ~ sin® @la11(Z - A1)] + exp as Z - o (1482a)
Vs ~ sin® cp[alg(z - Al)g + (azl + EalgAl)(Z - Al) - allAg] + exp as Z —»>
(1L8p)

Solution of the first- and second-order inner problems.- Now substitution
of equation (133) into the partial differential equation for ¥(¢,Z,k,1/R)
found sbove (see discussion following eg. (136b)) and into the conditions
(135), and letting € — O successively, leads to the following problems for
the first two terms in the inner expansion (133):

o) .
SZ |:\Y.'LZ\'I“/:LCPZ - ¥, ¥ gy - (ot ¥ 2 - (ein ‘Pwlzzz} =0
(119)

¥, =¥ _=0 at Z=0

with equation (148a) as the outer condition, and
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N
) .
52'[Y1Zw2@z + ¥ pten T Yio¥agn " Yiggley - 2(c00 DY Y, - @1n<@W2ZZZ]

- _ 2 _ o et -
- YlZY1Z¢ 2(cotc@wlz swl@wlzz sin o {6wlZZZ ZYlZZZZ} Y (150)

Yp=¥,=0 at Z=0

with equation (148b) as the outer condition. The problem for ¥; is, of
course, the same as would be obtained by Prandtl's first-order boundary-layer

theory.

As discussed above (prior to eq. (138)), in solving the problem for V¥,
we will not assume a priori that A; = constant (not varying with o), but
will use the equations that determine the form of A; and then observe
the significance of requiring A; = constant. The bracketed quantity in
equation (149) must be a function only of ¢, say &(p). Differentiation of
condition (1L48a) to obtain asymptotic expressions for the various terms in

o(¢p) then leads to

8(9) = ai1 sin* @ cot @ (151)
Now assume
¥ =2t Fi(n) (152)
where
P 5 1
£t = t(p) = a1 \jf sin” ¢ do
o)
= a11 [l - cos @ - L (1 - cos® @)1 (153a)
3 J ? ‘
. 4
- 211 810" 9 iln [l + & sin® ¢ + O(sin® CP)1 )
3 d
and where
n = n{p,2) = N2 (153b)
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.-
A= AN(sin @) = Eil—EiE——9-=,J2all [l - % sin® ¢ + O(sin* Q)} (153¢c)

Vot

Also define a function A by

A = A(sin ¢) = a%%—g%ﬁzga
(154)
= % [l - % sin® ¢ + O(sin* @)}
The problem for V¥; given by equations (148a) and (1L9) then becomes
Fi" + FiFa" = A[(F1')® - 1] (155a)
F1(0) = F1'(0) = 0 (155b)
Fi~ 1 - M1 + exp as 1 > ® (155¢)
or
Fi' ~ 1 + exp as 1 = © (155¢1)

where ( )!' here denotes differentiation with respect to 1. A local
similarity solution is obtained by assuming A to be a constant appropriate
to the particular value of ¢ (cf. Stine and Wanlass, ref. 50, or Lees,

ref. 51). In particular, for the region near the stagnation streamline,
neglect of (1/6)sin® ¢ in comparison to unity in equation (154) leads to a
locally similar solution with A = 1/2. PFurther, neglect of (1/6)sin® ¢ in
comparison to unity in equation (153c) then leads to a constant value for A;
near @ = 0 with A =,/2a11. For consistency, that is, in order to neglect
all quantities of 0(sin2 ¢) as ¢ = 0, we can also neglect terms as small as
(1/3)sin® ¢ in equation (153a), so that we now take

£ = (1/4)az1 sin? ¢ ; A =4J2a11 A=1/2 (156)

in the determination of ¥; by equations (151), (153b), and (155).

We see that the assumption of local spherical symmetry in the outer
solution and further local similarity in the inner solution require neglect of
0(sin® @) in comparison to unity in some quantities in the inner solution
(cf. discussion by Kao, ref. h6, p. 1893). This then yields constant Ay
which, further, will allow the condition of local spherical symmetry in the
outer solution to continue to second order.

Equation (155a) is equivalent to the equation derived by Falkner and
Skan (ref. 52). The numerical solution corresponding to A = 1/2 was first
given by Homann in 1936 (see ref. 53). More general solutions were studied
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by Hartree (ref. 54). A convenient tasbulation of the solution for A = 1/2 is
given in reference 55 (table V.3, p. 237) where, for example,

F,"(0) = 0.9278
and | (157)
B1 = 1im (n - F1) = 0.8046
T]_>°°
From this solution
N1 = Bi/N = 0.80464/2a11 (158)

where aij, depending on k, is given by equation (127b). This agrees with
Van Dyke's evaluation (ref. 30) of the first-order displacement thickness
(there referred to as the displacement thickness) at the stagnation point for
the special case k = 1/6 for which aji; = 2/3.

The second-order boundary-layer problem is given by equations (150) with
the outer condition (148b). A local similarity solution near ¢ = 0 is
obtained as

¥z = (1/2) J2& Fa(n) (159)
(with neglect of O(sin2 @) in comparison to unity, as in the problem for ¥q)

where £ and N are given by equation (156) and 7 = AZ. The resulting
ordinary differential equation is

(a/an) [Fa™ + F1Fa" - Fi'Fo! + Fy"Fol = SF Fy" + 6F1™ - nF """ (160a)
with the conditions

Fo(0) = Fo' (0) (160D)

Fo ~ (a1s/a11)(n - B1)2 + 2B1(q - B;) - Bz + exp as Tn > ® (160c)

from which also

Fo! ~ (2ai1n/a11)(n - B1) + 281 + exp as 1n > ® (1604)
Fg" ~ 2alg/all + exp as n > *® (1606)

and where
Bz = 2a1i1fe (161)
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The quantity A is the second-order term for displacement in equation (112).
With use of equation (155a) with A = 1/2, equation (160a) can be integrated
to

L{F2} = (5/3)(F1F1! - 1) + (11/3)F.i" - nF"' + Cy (162)

where L 1is the linear differential operator defined by

L{F=} = @i L) (163)
2 = 3 1 d,n2 1 d.'q 1 2

and where C; 1s a constant of integration determined by the asymptotic
boundary conditions to be

C1= -(1/3)B1 (164)

The problem for Fo is most easily solved by first splitting Fs into
two parts as follows. Let

Fo(n) = Fai(n) + F2"(0)Fax(y) (165)

where Fgl(ﬂ) is defined as the solution to the problem:

L.} = (5/3)(FiF1' - ) + (11/3)Fa" - qF1™ + Ca (1663)
F21(0) = Fo1'(0) = F21"(0) = 0 (166b)
Then the problem for Fos(n) becomes
L{Fss} = O (167a)
Fap(0) = Feo'(0) = 0 5 Fop"(0) = 1 (167b)

It is easily found by asymptotic integration that equations (166a) and (167a)
have the asymptotic solutions

Fo1 ~ Ko(n - B1)® + Ki(n - B1) + Ka + exp as m > ®
(168)

Fgg ~ K4(T] ~ Bl)z + K5 + exp as 1 > ®

where the constants Kz, Ks, K4, and Ks are determined by the initial condi-
tions (166b) and (167b), and where Ki = 28;. The constants can be obtained
by numerical integration of equations (166) and (167) and asymptotic evalua-
tion of the limits (found from (168)):
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Ko = (1/2)Foi(®) ,  Kq = (1/2)F25(x)
Ks = lim [Foi(q) - 281(n - B1) - (1/2)(q - Bl)ngf(n)]

- (169)
Ks = lim [Foo(n) - (1/2)(n - B1)®F25(1)]

—q—>oo J

Then it is found from conditions (160c), (160d), and (160e) that

I

lim
1]-—)00

F5"(0) [2312/all - Fzg(ﬂ)} _ aip/a11 - Ko

F22(n) Ka (170)

and
Bz = -Ka - KsFx"(0)

Note from equations (167) that the solutions for Fpi and Fop depend only on
prior solution of the first-order boundary-layer problem (for F1), and so are
independent of the external conditions. For an arbitrary Xk, numerical compu-
tation of the constants Ko, Kg, K4, and Ks then leads to:

I

Fo"(0) = 0.649056(2a15/a11) - 0.774713
(171)

1.3796 - 0.701954(2a;12/a11)

1

Ba

where aj; and ajs are given by equations(lQ?) and where di; 1is the root of
equation (126b).

Determination and matching of pressure.- As some difficulty in the past
has been associated with the determination of the second-order pressure, con-
sider now the pressure and the matching of pressure. Corresponding to ¥©
we have

PO = io(q):ng:l/R) = Pl(q);g)k) + GPE(CP)Q;k) + GZPS((P:C:}{) + .0
(172a)

where 50 is the assumed analytic outer function representing P asymptoti-
cally in the outer region (as l/R - 0 with { fixed). Corresponding to Wo,
we have

pO=71° = ﬁo(cﬁ,@,k,l/R)
= f’l((“li:g:k) + Gﬁz(é,g:k) + e%g(&:ﬁ:k) + ... (1720)

The inner function Pl is to represent P asymptotically as l/R - 0 with Z
fixed, Thus, following the convention outlined above, define
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s o, 4

op(L/R)P(9,2,%,1/R) = 5(0,2,k,1/R) ~ B(P,{,k,1/R) + exp (173)
73
as 1/R > 0 with Z fixed

where
P = P:L((P)Z:k) + €P2((P;ZJk) + GZPB(CP)Z:k) + oo . (1710

is assumed analytic with respect to € at € = 0. The factor o (l/R) will
be determined to make ©P; the first nonzero term in equation (172). The
inner and outer pressure functions will be seen to match according to

Pl (3% +exp  as zZ oo (175)
as expected (cf. eq. (76)).
For determination of the terms in equations (172) and (l7h), equa-
tions (102) can be put in terms of V. The equations for P° are then the

corresponding equations in terms of V© and the equations for P+ are the
corresponding eguations in terms of VY.

The first- and second-order terms of the pressure function in the outer
problem are then to be found from:

k(3p, /3¢) = -sin ¢ cos ¢ e'4g[(fl')2 - 201" + 2f.F. "] (1764a)

k(apl/a§)= -sin® @ e‘4C[2flfl' -~ (£1')2] - cos® 9 e‘4c[4flfl' - 8£:,21 (176b)

and

k(apg/acp) = -2 sin ¢ cos @ e'4C[fl'f2' - £1fs"™ - £ + (£1f)'] (176¢c)

k(dp,/3t) = -2 sin® o e"]’c[flfg' + £11fs - £1'F2"]
- cos® o e_4c[(flf2)' - 4f,fs] (1764)

Equations (176a) and (176c) may be integrated with respect to ¢, then
differentiated with respect to € and equated, respectively, to equa-

tions (176b) and (176d) to evaluate functions of integration, msking use of
the differential equations (124) and (139). The constants of integration are
evaluated by the boundary conditions on f; and fo at (transferred to) QSl.

The results are
-kp, = sin® ¢ &b E (£1%)2 - £1f1" + flfl']

+ 2e'4§f12 + % k% - k (1772)
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“kp, = sinche?4§[fl'f2' - F1fo" - £ + (£1F5)1] + ue_4gflf2 (1770)

In the equations for the inner problem it is found that, for nonzero Pj,
cp(l/R) must be 0(1) as 1/R - 0; thus, we take op = 1. The equations for
Py, are then

k sin® @[dP,/d(sin 9)] = -0(p)/cos ¢ = a3, sin® o

(178)
kPlZ=O

where ®(p) is the bracketed quantity in equation (149), with the result
kP, = -(1/2)af, sin® ¢ + constant

Since k(P) = -(1/2)a2, sin® ¢ + k - (1/2)k® and T = P;, the matching
rule (175) is satisfied for n = 1 by

kP, = -(1/2)a%1 sin® ¢ + k - (1/2)K2 (179)

The equations for P, are (with neglect of O(sin2 @) in comparison to unity
and with use of equations (155a) and (162)):

n

k[dP2/d(sin )] =./2 alls/g(Sin ®)[(2/3)(F1" + F1F1') + (1/3)n + Ci1l

(180)

k(3P2/31) = (14/2)a11° " (sin2 ) (Fy1)2

which give
kP2 = (LA2)a2:" Z(sin® 9)[(2/3)(F1" + FiFa') + (1/3)n + 1] + conswalt (181)
where Ci is given by equation (16L4). Since
k(52°)2% = [-(1/2)a%, sin® ¢ + k - (1/2)k®] + € sin® glat.2
- a11821 + 2310850 - 211820] (182)

and 52i = P; + €Po, it is found that equation (175) is satisfied exactly for
n = 2 only if the constant of integration in equation (181) is zero.

The body surface pressure is given by

P -P — —_ 1
<p v 2°O> = By ~ P1<CP;O:k: §> = Pl((P:O)k) + GPZ(CP:O)k) + . .
00 00 b

ka5 e(a11)%% [
<l - = o 2L g4p2 Q)+ _ﬁ—ﬁ— |j§ Fl"(O)+Cl:|Sin2(p+ .o
(183)

1l
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Results for velocity and skin friction.- The dimensionless velocity
components uf and v© corresponding to the outer function V© are defined by

N ¢

u® = sin @ = (sin m)e-z [£1'(¢) + ef2' (£) + 0(e®)] (18L4a)
-e —ZQW o C

v = < o = (2 cos P)e2[ra(t) + efa(t) + 0(e®)] (181p)

The velocity components corresponding to the inner function wi are

' e-zeZwZ T
ul = Sing - sino {allFl'(T]) +e [ [F2'(n) - 2nFo'(n)]+ 0(62)} (18Le)
-2€7 ¥
. -e
vt o= ——EEH—EJQ = -¢(cos @) {JEEII-Fl(ﬂ) + e[Fa(n) - 2nF1(n)] + 0(62)}' (184a)

It is easily shown that the inner and outer functions representing both u
and v (egs. (184)) satisfy the matching rules (cf. eq. (76))

uhl ~ (uno)rli + exp as Z —> ©
, ni (185)
-V-nl ~ (VIIO) + e}Cp as Z —> 00
for n=1and n= 2, The skin-friction coefficient is
4 My < > -
C, = = = = (Vpp - 2Up) (186a)
T (l/g)poovoo pooVooI‘-b P kR sin @ ) 46 £’/ t=0
- __22___
= ¥ sin g lZZ(cp,o k) + ¥ ZZ(@,O k) + 0(e®) (186b)
3/2 )
= ¢ sin @ [igélil——— F,"(0) + ¢ —%fi-Fg”(o) + 0(62)} (186¢)
= ¢ sin @ [Efl + eafz + 0(e®)] (1864)

Computed values of éfl and 5}2 are listed in the following tabulation.
Corresponding values of di, ds, A1, and As in equations (118) and (112) are
also given.

o7



k Cr, Cr, d, do Ay Do
1/6 8.56954  24.9568  0.118034 0.77900  0.696759 -2.12408
1/10 9.76336 90.0171 .073052 8L87h . 790954 -8.57017
1/20  11.61h3 432.552 .038646 .97686 .9L0511  -42.9388

Results are shown in figures 4 to 8. The dimensionless magnified boundary
layer displacement is plotted to first and second order in figure 6 (cf.

eqg. (11h)):

A'E-——E‘e——-—:_l—_=Al+€<A2+%A12>+"’ (187)

where 1y is the actual displacement distance corresponding to the displace-
ment & = €A of the ¢ coordinate. These results are discussed in the next

section.

Exact numerical solution of model (v=1)

——~——Second-order boundary layer

— < —— First-order boundary layer

- —— — e e

10 102 10
_ P2 Vool b
R: 272

Figure %.- Skin friction.
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\ \ — Exact numerical solution
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Figure 5.- Shock standoff distance.
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Figure 6.- Boundary-layer displacement.
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Comparison With a Numerical Solution of the Model Problem

The results of applying the asymptotic-expansion method to the model for
viscous hypersonic flow described above can be compared with a numerical local
similarity solution of the same model problem. The equations to be solved
are (103), (104), and (105). This problem will be seen to possess the prop-
erty of local similarity near ¢ = 0. The solution obtained is similar to
Probstein's (ref. 48), but for greater simplicity the viscosity has been taken
to be constant here.

Consider the following assumed separation of variables:

v = sinzfgecG(Q)A (188)

(The presence of the factors 1/R and eC in equation (188) will lead to
elimination of those same factors from the differential equation.) For con-
venience, define a parameter

Vv
N = kR(1L + d) = Peo e’ (189)
HZ
and a new variable
T _ - 1+ y
E= -t = g (1) (190)

Substitution of equation (188) into (103), (104), and (105) gives the differ-
ential equation

G - 2™ - 5a" + 6G' = -2(cos @)G(G™ - 26" - 5G' + 6G) (191)

where ( )! denotes differentiation with respect to either ¢ or-E, and the
boundary conditions:

At £ =0,t=¢C =-t = -log (L + 4a):
G=0 (192a)
G' =0 (192p)
and at ¢ =t = log (1 + d), t = o0:
¢ = (1/2)N (192¢)
Gt = N(1/k -~ 1/2) (1924)
and
o = S -1, g> s W (g -2+ g> (192e)
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One sees that the assumed form, equation (188), did not lead to true
separation of wvariables, but that the well-known condition of local similarity
near ¢ = O 1is obtained by taking cos ¢ equal to unity in equations (191)
and (192e). Then the resulting fourth-order ordinary differential eguation
can be solved with the five boundary conditions, equation (192), one of which
is required to determine the unknown d. The two input parameters (to be
specified) are N and k. The fourth-order differential equation (191) with
cos @ = 1 can be integrated once to obtain

G"t - 2oG" - 5Gt + 6G = Ceg (193)
where
gt [
g:-fg 26 dat = - [> 26 4t (19%)
S ]
and where
c= (g™ - 28" - 56" + 6G), (195)
t=t,

Since three conditions are specified at the shock and only two at the
body, it is most convenient to start integrating at the shock, where a fourth
condition (the value of GM"' or C), must be guessed and iterated. The problem
of the unknown shock location is eliminated by using € as the independent
variable, which has the wvalue zero at the shock. Equations (l92el and (195)

provide two simultaneous equations to solve for G" and G"' at { =0 in
terms of C if C 1is to be specified and iterated upon.

To solve the problem numerically, one estimates g value for C,
integrates equation (193) with decreasing €, and stops when G' = O. By an
appropriate iteration scheme, one adjusts the value of C wuntil condition
(192a) is satisfied at the same value of { where (192b) is satisfied. That
location is then denoted as ¢ = QO = —§S = -log (1 + d), from which Cs and 4
are determined. It is convenient to use the form (193), rather than (191),
and to iterate on values of C rather than on GM" (¥ = 0) because an initial
estimate for C 1is more easily obtained. Furthermore, when N 1is large, C
is very small and the iteration becomes difficult. The_difficulty is remedied
by estimating (from boundary-layer theory) a value of §, say Cl, where the
right side of equation (193) begins to become significant. In that case, one
keeps the right side of equation (193) at zero until Cl is reached, and then
replaces the right side by qeg, where q 1is some specified small number and

g = j_g -2¢ 4t
9

Since C 1is taken to be zero for the first part of the integration in this
case, one iterates instead on the value of Ql, corresponding to a specified
g, until the conditions at the body are satisfied. Different small values of
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R

q are used for each case, and the results compared, to ensure that q is
small enough that the solution obtained is not affected, to within the desired
numerical accuracy, by this procedure.

The dimensionless velocity components (see egs. (99)) are given in this
solution by

(1/R) (sin 9)e 5(at + @)

u =
-t (196)
v = -2(1/R)(cos 9)e °G
and the skin-friction coefficient, defined in equation (l86a), is
= (2/%R®)(sin @)&"(¢ = 0) (197)

The dimensionless pressure gradient along the body surface is (with the local
similarity condition):

_ o0 | _ (sin @)g™(§ = 0)
[o(sin @)}b B kR2 (198)

To find the complete viscous displacement, one needs the complete outer
solution for flow over a displaced surface at { = ® with no boundary layer
present. That is, for the outer solution, the no-slip condition is replaced
by the condition that there be no boundary layer, in line with the concept
that { = is the frictionless surface that would produce the flow field
that corresponds to the outer solution, which is approached exponentially by
the exact solution. The complete outer solution is ° = (sin® @f°({), where
fO is the solution e8a( (t)/R that satisfies equatlons (191) and (192) but
with equations (192a) and (192b) replaced by f° =0 at ¢ = and the condi-
tion that no rapid (exponentlal) variations with { near C = ® are per-
mitted. The solution for f° is found to have the same form as eqguation (lESL
but the constants are found from the complete boundary conditions at the shock
and thus depend on R for v = 1. The condition f© =0 at { =3 then
gives the following equation (refer to p. L2):

3(1 - ®¥)% + 5(bk - 1)(1 + d*f2+ 2(1 - x)(1 - 6k)(1 + ax)°

+ o ioi o D(l . % j>(l +a%¥)2 - (1 - k) (1 - 6k)(1 + d*)5] =0  (199)

For a given case, N 1s specified and d is determined, as discussed above,
so d¥ is determined by this equation. Then 8 is determined from equa-
tion (117) as

5 = log (=22 > (200)

and A' = Rl/zys is found from equation (116).
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Although the calculations were made for both v = 0 and v = 1, only those
for v = 1 are shown in figures 4 to 8. The values of C¢ for v = 0 and
vy = 1 differ very little for R > 500. The differences are much less than the
differences shown between the second-order solution and the exact numerical
solution for v = 1. Similarly, the differences in the values of 4 for
y =0 and v = 1 were very small for R > 100.

In the plot of \fR Cr/sin ¢ (fig. L), first-order boundary-layer theory
gives a constant value, shown as a dashed line for each k. Note in partic-
ular that the second-order solution follows closely the exact numerical solu-
tion of the model for fairly low R when k 1is not too small. However,
apparently the asymptotic convergence to the exact solution of the model prob-
lem is slowed when k becomes small. For example, for k = 1/6, the first-
order boundary-layer solution for Cr¢ at R = 1000 is 9.8 percent low, and
the second-order solution corrects that error to a value less than 1.6 percent
low. TFor k = l/lO, the corresponding negative errors are 26 percent for
first order and L.6 percent for second order. For k = 1/20, those negative
errors at R = 1000 are 61 percent for first order, and 16 percent for second
order. The percent errors increase as Kk becomes small. This effect of
small %k slowing the asymptotic convergence can also be observed from the
numbers given in the table following equation (186d). As k becomes small,
the numerical factor of the second term Efz becomes large in comparison to
that of the first term Cg,. This can be shown to be the effect of increasing
vorticity interaction; as k becomes small, the vorticity in the external
flow {outer solution) becomes comparsble to the vorticity generated at the
body surface.

Similarly, the plots of shock standoff distance and boundary-layer
displacement, and the tabulated numerical factors following equation (186d)
exhibit the same slowing of convergence as k becomes small., Note in partic-
ular that the second-order boundary-layer displacement agrees well with the
exact solution of the model problem for very low R when k = 1/6.

Figures 7 and 8 illustrate the substantial improvement of second-order
theory in describing the u and v velocity profiles. First-order boundary-
layer theory for the tangential velocity u goes asymptotic to a constant
value equal to the first-order inviscid surface.speed. For k = 1/10 and
R = 9.25leO3, the second-order outer and inner solutions for u and v agree
almost exactly with the exact numerical solution of the model with the inner
solution agreeing almost exactly near y = O, the outer agreeing more closely .
outside the boundary layer.

CONCLUDING REMARKS

It has been shown how a new approach to constructing inner and outer
expansions allows the derivation and use of a stronger form of the rule for
matching the expansions in some singular perturbation problems of the
boundary-layer type. By use of this "displacement matching," all displace-
ment effects are retained explicitly, and explicit asymptotic outer boundary
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conditions for the inner function are provided. Application of this method

to viscous hypersonic flow over a blunt body has led to an investigation of
the role of boundary-layer displacement, including higher-order displacements,
not heretofore considered. In particular, second-order displacement of the
boundary layer has been calculated, and its relationship to the shock standoff
distance indicated. The outer and inner expansions of all functions and deri-
vatives of the solution match according to the same stronger form of the
matching principle. Comparison of the second-order solution, including seccnd-
order viscous displacement, with an exact numerical solution of the model prchb-
lem has exhibited very close agreement for Reynolds number only moderately
large, and has exhibited a slowing of the asymptotic convergence as the shock
density ratio k Dbecomes small, indicating the increasing effects of
vorticity interaction.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., Nov. 10, 1966
124-07-02-23
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APPENDIX
PRINCTIPAT, NOTATION

see equations (154) and (156)

coefficients in expansions; see equations (125¢), (127), (1Lob),
and (142)

constant of integration first appearing in equation (193)

constant of integration first appearing in equation (162);
evaluated in (16L4)

skin-friction coefficient, equations (186)
constants defined in equations (186)

domain of independent variables defined on pages 17 and 18 or on
page 3L

domain of magnified independent variables where the magnified
inner function is analytic with respect to e; (see eq. (60c))
or where the series for F converges in equations (88)

domain of independent variables where outer function f£° is

analytic with respect to e, (see eq. (55b)) or where the series
for fO converges in equations (87)

s - Th
o

dimensionless shock standoff distance,
defined on page 42, determined by equation (199)
see equations (108), (110), and (118)

terms of expansion of d, equation (llO)

magnified dependent variable, equation (60c)

functions of x,Y in equations (62) and (92b); in the blunt-body
problem, functions of 1; see equations (152) and (159)

defined by equations (165) through (167)
generally a function of x,y,z,e€ (see pages 5 and 17)
defined on pages 17, 18; also see page 34

inner function (egs. (60b,c); also egqs. (88))



outer’ function (see pp. 21, 22, and 34)
generally functions of x,y in an asymptotic expansion (see p. 17)

outer displacement dependent varisble; see equations (68), (69), and

(90b)

functions of X,y in the terms of an expansion, equations (69), (91);
in the blunt body problem, see eguations (123), (138)

see equation (188)

arbitrary function; and function of { defined in equation (194) for
the blunt body problem

specific enthalpy

constants defined on page 53

Po/ Py

linear differential operator defined by equation (163)
Reynolds number defined in equation (189)

magnified inner pressure function defined on page 55
terms of the expansion (LT7L)

pressure

dimensionless pressure function (p. 38)

inner pressure function defined on page 54

outer pressure function

defined on page 18

defined in equations (60b), (60c), (88); see also equations (132) and
(134)

defined on page 21; also equations (107) and (111)
Reynolds number, pZerb/ug, equation (101)

radial distance measured from sphere center
defined on page L2

dimensionless velocity components; see page 38
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flow velocity vector and magnitude of velocity, respectively
defined on page 22; see also pages 25 and 26

coordinate x, used along with ¥ in the transformation to displace-
ment varisbles (egs. (67))

magnified independent variable, equation (60a)

general independent variable; in the blunt body problem y is
dimensionless and m,y 1s the distance from the body surface

e® -1 (eq. (114)); s is the displacement distance from the body
surface (see also p. 58)

independent displacement variable, y - ®; see pages 27, 28, and 35
magnified independent variable in the blunt body problem (eq. (131))

parameter in example problems 2 (p. 7) and 3 (p. 9); also used on
page 31

see equations (157), (158), (161)

magnified displacement, 6/06

terms of expansion of A, equations (66) and (112)

dimensionless magnified displacement of y coordinate, equation (11k)

general dimensionless displacement in boundary-layer type problems;
see equations (22c¢), (24p), (3Lb), (59p), (64), and (112)

generally a small parameter (see p. 5); in the blunt body problem,
€ = R71/2 (eq. (137))

see page 25

see page 21

independent variable in blunt body problem (egs. (lOO))

displacement variable, { - d

defined in equation (190)

independent variable for boundary-layer solution; see equation (153b)

see equations (153c), (156)
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parameter in example problem 3 (p. 8); also viscosity coefficient
in blunt body problem

artificially inserted parameter, first appearing in condition (105¢c);
discussed on pages 40, Ll

independent variable for the boundary-layer solution; see
equations (153a) and (156)

mass density

order of magnitude of width of nonuniform region (see eq. (60a) and

pp. 46, L7)

order of magnitude of dependent variable in region of nonuniformity
(see eq. (60c) and pp. 46, LT)

order of magnitude of ©; usually = o1 (see eq. (65))

funetion of integration defined on page 50

angle measured from stagnation streamline, centered at sphere center
(fig. 3)

~

variable o, used along with { in transformation to displacement
variables (eq., (119a))

magnified inner stream function in the blunt body problem,
equation (131)

terms of expansion (133)

dimensionless Stokes stream function defined by equations (99)
terms of expansion (109)

defined on page 46

defined on page 41

defined in equation (119b)

terms of expansion of ¥°, equation (119¢)

dimensionless vorticity, see page 45

Subscripts

value behind shock on stagnation streamline

value in free stream
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value at body surface or boundary

index denoting term of an expansion

value behind shock

denote partial differentiation with respect to ¢ or {, respectively

denote partial differentiation with respect to © or Z, respectively

Superscripts

inner function or function transformed from outer displacement
variables to inner magnified wvariables

outer function or function transformed to outer displacement
variables
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